Suppr超能文献

多重插补:处理缺失数据。

Multiple imputation: dealing with missing data.

机构信息

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Nephrol Dial Transplant. 2013 Oct;28(10):2415-20. doi: 10.1093/ndt/gft221. Epub 2013 May 31.

Abstract

In many fields, including the field of nephrology, missing data are unfortunately an unavoidable problem in clinical/epidemiological research. The most common methods for dealing with missing data are complete case analysis-excluding patients with missing data--mean substitution--replacing missing values of a variable with the average of known values for that variable-and last observation carried forward. However, these methods have severe drawbacks potentially resulting in biased estimates and/or standard errors. In recent years, a new method has arisen for dealing with missing data called multiple imputation. This method predicts missing values based on other data present in the same patient. This procedure is repeated several times, resulting in multiple imputed data sets. Thereafter, estimates and standard errors are calculated in each imputation set and pooled into one overall estimate and standard error. The main advantage of this method is that missing data uncertainty is taken into account. Another advantage is that the method of multiple imputation gives unbiased results when data are missing at random, which is the most common type of missing data in clinical practice, whereas conventional methods do not. However, the method of multiple imputation has scarcely been used in medical literature. We, therefore, encourage authors to do so in the future when possible.

摘要

在许多领域,包括肾脏病学领域,缺失数据在临床/流行病学研究中是一个不可避免的问题。处理缺失数据最常用的方法是完全案例分析——排除缺失数据的患者——均值替代——用该变量的已知值的平均值替代变量的缺失值——最后观察值结转。然而,这些方法存在严重的缺陷,可能导致有偏差的估计值和/或标准误差。近年来,一种新的处理缺失数据的方法称为多重插补。该方法根据同一患者中存在的其他数据来预测缺失值。该过程重复多次,生成多个插补数据集。然后,在每个插补集中计算估计值和标准误差,并将其汇总为一个总体估计值和标准误差。这种方法的主要优点是考虑了缺失数据的不确定性。另一个优点是,当数据随机缺失时,多重插补方法给出无偏结果,这是临床实践中最常见的缺失数据类型,而传统方法则没有。然而,多重插补方法在医学文献中几乎没有被使用。因此,我们鼓励作者在未来可能的情况下使用这种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验