Aminzare Zahra, Sontag Eduardo D
Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019 USA.
Nonlinear Anal Theory Methods Appl. 2013 May 1;83:31-49. doi: 10.1016/j.na.2013.01.001.
This paper proves that contractive ordinary differential equation systems remain contractive when diffusion is added. Thus, diffusive instabilities, in the sense of the Turing phenomenon, cannot arise for such systems. An important biochemical system is shown to satisfy the required conditions.
本文证明,当加入扩散项时,压缩型常微分方程组仍保持压缩性。因此,对于此类系统,不会出现图灵现象意义上的扩散不稳定性。一个重要的生化系统被证明满足所需条件。