Suppr超能文献

野生型和 V94M 人 UDP-半乳糖 4-差向异构酶的动力学比较——严重差向异构酶缺乏性半乳糖血症的计算视角。

Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia.

机构信息

School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.

出版信息

Gene. 2013 Sep 10;526(2):318-24. doi: 10.1016/j.gene.2013.05.027. Epub 2013 May 31.

Abstract

UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.

摘要

UDP-半乳糖 4′-差向异构酶(GALE)催化 UDP-半乳糖和 UDP-葡萄糖的相互转化,这是半乳糖分解代谢的重要步骤。III 型半乳糖血症是一种遗传性代谢疾病,与人类 GALE 的突变有关。V94M 突变与 III 型半乳糖血症的一种非常严重形式有关。虽然已经有多种结构和生化研究报道阐明了野生型和突变型人类 GALE 之间的差异,但对于蛋白质的动力学以及突变如何影响结构和功能知之甚少。我们对野生型和 V94M 酶在不同底物和辅因子结合状态下进行了分子动力学模拟。在突变体中,底物与关键催化残基(Tyr157)和酶结合的 NAD+辅因子之间的平均距离以及活性位点动力学发生改变,使底物结合稍微不稳定。然而,蛋白质的整体稳定性或动力学没有改变。这与实验结果一致,即影响主要在周转率(kcat)上,对 Km 的影响较小。发现活性位点波动与酶与仅一个亚基结合的底物相关,这表明亚基间存在通讯。与大肠杆菌 GALE 中的等效环相比,人 GALE 中的活性位点环的流动性更大,这解释了为什么前者可以催化 UDP-N-乙酰半乳糖胺和 UDP-N-乙酰葡萄糖胺的相互转化,而细菌酶则不能。这项工作阐明了疾病的分子机制,并可能为 III 型半乳糖血症的小分子治疗设计提供信息。

相似文献

引用本文的文献

8
HEK293T cell lines defective for O-linked glycosylation.O-连接糖基化缺陷的人胚肾293T细胞系。
PLoS One. 2017 Jun 27;12(6):e0179949. doi: 10.1371/journal.pone.0179949. eCollection 2017.

本文引用的文献

7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验