Suppr超能文献

一种新型探针密度可控的电化学发光生物传感器,用于基于金纳米粒子阵列图案自组装平台的 DNA 杂交优化的超灵敏 Hg2+检测。

A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform.

机构信息

Department of Chemistry, Shantou University, Shantou, Guangdong 515063, China.

出版信息

Biosens Bioelectron. 2013 Nov 15;49:139-45. doi: 10.1016/j.bios.2013.05.013. Epub 2013 May 15.

Abstract

Biosensor based on DNA hybridization holds great potential to get higher sensitivity as the optimal DNA hybridization efficiency can be achieved by controlling the distribution and orientation of probe strands on the transducer surface. In this work, an innovative strategy is reported to tap the sensitivity potential of current electrochemiluminescence (ECL) biosensing system by dispersedly anchoring the DNA beacons on the gold nanoparticles (GNPs) array which was electrodeposited on the glassy carbon electrode surface, rather than simply sprawling the coil-like strands onto planar gold surface. The strategy was developed by designing a "signal-on" ECL biosensing switch fabricated on the GNPs nanopatterned electrode surface for enhanced ultra-sensitivity detection of Hg(2+). A 57-mer hairpin-DNA labeled with ferrocene as ECL quencher and a 13-mer DNA labeled with Ru(bpy)3(2+) as reporter were hybridized to construct the signal generator in off-state. A 31-mer thymine (T)-rich capture-DNA was introduced to form T-T mismatches with the loop sequence of the hairpin-DNA in the presence of Hg(2+) and induce the stem-loop open, meanwhile the ECL "signal-on" was triggered. The peak sensitivity with the lowest detection limit of 0.1 nM was achieved with the optimal GNPs number density while exorbitant GNPs deposition resulted in sensitivity deterioration for the biosensor. We expect the present strategy could lead the renovation of the existing probe-immobilized ECL genosensor design to get an even higher sensitivity in ultralow level of target detection such as the identification of genetic diseases and disorders in basic research and clinical application.

摘要

基于 DNA 杂交的生物传感器具有很大的提高灵敏度的潜力,因为通过控制探针链在传感器表面的分布和取向,可以实现最佳的 DNA 杂交效率。在这项工作中,报道了一种创新策略,通过将 DNA 发夹探针分散锚定在金纳米粒子(GNPs)阵列上,从而挖掘当前电化学发光(ECL)生物传感系统的灵敏度潜力,GNPs 阵列是在玻碳电极表面电沉积的。这种策略是通过设计一种“信号开启”ECL 生物传感开关来实现的,该开关构建在 GNPs 纳米图案化电极表面上,用于增强对 Hg(2+)的超高灵敏度检测。一条带有二茂铁作为 ECL 猝灭剂的 57 个碱基对的发夹 DNA 和一条带有 Ru(bpy)3(2+)作为报告分子的 13 个碱基对的 DNA 杂交,构建了关闭状态下的信号发生器。引入一条富含胸腺嘧啶(T)的 31 个碱基对的捕获 DNA,在存在 Hg(2+)的情况下与发夹 DNA 的环序列形成 T-T 错配,并诱导茎环打开,同时触发 ECL“信号开启”。在最佳 GNPs 数密度下,获得了最低检测限为 0.1 nM 的最高灵敏度,而过多的 GNPs 沉积会导致生物传感器的灵敏度恶化。我们期望本研究策略能够引领现有的基于探针固定的 ECL 基因传感器设计的革新,以在超低水平的目标检测中获得更高的灵敏度,例如在基础研究和临床应用中对遗传疾病和紊乱的鉴定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验