Suppr超能文献

仿生离子纳米通道作为一种高度选择性的顺序传感器,用于检测锌离子,然后是磷酸根阴离子。

Biomimetic ion nanochannels as a highly selective sequential sensor for zinc ions followed by phosphate anions.

机构信息

Department Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.

出版信息

Chemistry. 2013 Jul 8;19(28):9388-95. doi: 10.1002/chem.201300200. Epub 2013 Jun 3.

Abstract

A novel biomimetic ion-responsive multi-nanochannel system is constructed by covalently immobilizing a metal-chelating ligand, 2,2'-dipicolylamine (DPA), in polyporous nanochannels prepared in a polymeric membrane. The DPA-modified multi-nanochannels show specific recognition of zinc ions over other common metal ions, and the zinc-ion-chelated nanochannels can be used as secondary sensors for HPO4(2-) anions. The immobilized DPA molecules act as specific-receptor binding sites for zinc ions, which leads to the highly selective zinc-ion response through monitoring of ionic current signatures. The chelated zinc ions can be used as secondary recognition elements for the capture of HPO4(2-) anions, thereby fabricating a sensing nanodevice for HPO4(2-) anions. The success of the DPA immobilization and ion-responsive events is confirmed by measurement of the X-ray photoelectron spectroscopy (XPS), contact angle (CA), and current-voltage (I-V) characteristics of the systems. The proposed nanochannel sensing devices display remarkable specificity, high sensitivity, and wide dynamic range. In addition, control experiments performed in complex matrices suggest that this sensing system has great potential applications in chemical sensing, biotechnology, and many other fields.

摘要

通过共价固定金属螯合配体 2,2'-二吡啶甲胺(DPA),在聚合物膜中制备的多孔纳米通道中构建了一种新型仿生离子响应多纳米通道系统。DPA 修饰的多纳米通道对锌离子表现出特定的识别能力,而锌离子螯合纳米通道可用作 HPO4(2-)阴离子的二次传感器。固定化的 DPA 分子作为锌离子的特异性受体结合位点,通过监测离子电流特征,实现了对锌离子的高选择性响应。螯合的锌离子可用作捕获 HPO4(2-)阴离子的二级识别元素,从而构建用于 HPO4(2-)阴离子的传感纳米器件。通过对系统的 X 射线光电子能谱(XPS)、接触角(CA)和电流-电压(I-V)特性的测量,证实了 DPA 固定化和离子响应事件的成功。所提出的纳米通道传感装置表现出显著的特异性、高灵敏度和宽动态范围。此外,在复杂基质中进行的对照实验表明,该传感系统在化学传感、生物技术和许多其他领域具有巨大的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验