Technische Universität Darmstadt, Fachbereich Material- u. Geowissenschaften Fachgebiet Materialanalytik, Alarich-Weiss-Str. 2, 64287, Darmstadt, Germany.
GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291, Darmstadt, Germany.
Chempluschem. 2020 Mar;85(3):587-594. doi: 10.1002/cplu.202000045.
We report a nanofluidic device for the label-free detection of phosphoprotein (PPn) analytes. To achieve this goal, a metal ion chelator, namely 4-[bis(2-pyridylmethyl)aminomethyl]aniline (DPA-NH ) compound was synthesized. Single asymmetric nanofluidic channels were fabricated in polyethylene terephthalate (PET) membranes. The chelator (DPA-NH ) molecules are subsequently immobilized on the nanochannel surface, followed by the zinc ion complexation to afford DPA-Zn chelates, which act as ligand moieties for the specific binding of phosphoproteins. The success of the chemical reaction and biomolecular recognition process that occur in a confined geometry can be monitored from the changes in electrical readout of the nanochannel. The nanofluidic sensor has the ability to sensitively and specifically detect lower concentrations (≥1 nM) of phosphoprotein (albumin and α-casein) in the surrounding environment as evidenced from the significant decrease in ion current flowing through the nanochannels. However, dephosphoproteins such as lysozyme and dephospho-α-casein even at higher concentration (>1 μM) could not induce any significant change in the transmembrane ion flux. This observation indicated the sensitivity and specificity of the proposed nanofluidic sensor towards PPn proteins, and has potential for use in differentiating between phosphoproteins and dephosphoproteins.
我们报告了一种用于无标记检测磷酸化蛋白(PPn)分析物的纳米流体设备。为了实现这一目标,合成了一种金属离子螯合剂,即 4-[双(2-吡啶基甲基)氨基甲基]苯胺(DPA-NH)化合物。在聚对苯二甲酸乙二醇酯(PET)膜中制造了单不对称纳米流体通道。随后,将螯合剂(DPA-NH)分子固定在纳米通道表面上,然后进行锌离子络合,得到 DPA-Zn 螯合物,它们作为配体部分用于特异性结合磷酸化蛋白。在受限几何形状中发生的化学反应和生物分子识别过程的成功可以从纳米通道的电读出变化中监测到。纳米流体传感器能够敏感且特异性地检测周围环境中较低浓度(≥1 nM)的磷酸化蛋白(白蛋白和α-酪蛋白),这一点从流过纳米通道的离子电流显著降低得到证明。然而,去磷酸化蛋白(如溶菌酶和去磷酸化α-酪蛋白)即使在较高浓度(>1 μM)下也不能引起跨膜离子通量的任何显著变化。这一观察结果表明,所提出的纳米流体传感器对 PPn 蛋白具有敏感性和特异性,并有可能用于区分磷酸化蛋白和去磷酸化蛋白。