文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用磁共振成像评估树突状细胞疫苗接种。

Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

机构信息

Malaghan Institute of Medical Research, Wellington, New Zealand.

出版信息

PLoS One. 2013 May 29;8(5):e65318. doi: 10.1371/journal.pone.0065318. Print 2013.


DOI:10.1371/journal.pone.0065318
PMID:23734246
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3667033/
Abstract

Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI) as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.

摘要

用负载抗原的树突状细胞疫苗进行癌症免疫疗法可以诱导一些患者产生临床反应,但需要进一步优化,才能在临床上充分发挥这一策略的潜力。优化取决于能否监测到树突状细胞在体内注射后发生的细胞事件,并确定是否诱导了针对肿瘤的抗原特异性免疫反应。在这里,我们描述了使用磁共振成像 (MRI) 作为一种简单、非侵入性的方法来评估疫苗的效果。通过将树突状细胞装载到高磁性的铁纳米粒子上,可以评估注入的细胞是否引流到淋巴结。还可以通过评估连续几轮负载抗原的树突状细胞的迁移来确定是否启动了抗原特异性反应;在成功引发细胞毒性反应的情况下,大量负载抗原的细胞在前往淋巴结的途中被清除,而没有抗原的细胞可以不受阻碍地到达淋巴结。还可以通过监测引流淋巴结大小的增加来简单地验证疫苗诱导的反应的诱导,这是一种由于疫苗诱导的淋巴细胞捕获而引起的抗原特异性反应,随着重复接种,这种反应会变得更加明显。总的来说,这些 MRI 技术可以为疫苗接种策略提供有用的早期反馈,也可以用于在治疗早期从非应答者中选择应答者的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/2f2e4c7516c4/pone.0065318.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/ba03640a0a0c/pone.0065318.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/d586065734b4/pone.0065318.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/7a500bcfd667/pone.0065318.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/d42d6d447859/pone.0065318.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/b2271bbb8acf/pone.0065318.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/d638621d2fe8/pone.0065318.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/20a47d5b32b0/pone.0065318.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/2f2e4c7516c4/pone.0065318.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/ba03640a0a0c/pone.0065318.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/d586065734b4/pone.0065318.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/7a500bcfd667/pone.0065318.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/d42d6d447859/pone.0065318.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/b2271bbb8acf/pone.0065318.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/d638621d2fe8/pone.0065318.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/20a47d5b32b0/pone.0065318.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/3667033/2f2e4c7516c4/pone.0065318.g008.jpg

相似文献

[1]
Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

PLoS One. 2013-5-29

[2]
Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy.

Immunol Lett. 2016-9

[3]
Using lymph node swelling as a potential biomarker for successful vaccination.

Oncotarget. 2016-6-14

[4]
Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity.

Br J Cancer. 2006-10-9

[5]
Monitoring of in vivo function of superparamagnetic iron oxide labelled murine dendritic cells during anti-tumour vaccination.

PLoS One. 2011-5-27

[6]
The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen.

Int J Oncol. 2006-4

[7]
Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model.

Radiology. 2015-1

[8]
Reinforcement of cancer immunotherapy by adoptive transfer of cblb-deficient CD8+ T cells combined with a DC vaccine.

Immunol Cell Biol. 2011-3-8

[9]
Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy.

ACS Nano. 2015-6-3

[10]
Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen.

J Immunother Cancer. 2019-4-8

引用本文的文献

[1]
Durable lymph-node expansion is associated with the efficacy of therapeutic vaccination.

Nat Biomed Eng. 2024-10

[2]
Magnetic Particle Imaging Is a Sensitive In Vivo Imaging Modality for the Detection of Dendritic Cell Migration.

Mol Imaging Biol. 2022-12

[3]
Predictive Markers of Immunogenicity and Efficacy for Human Vaccines.

Vaccines (Basel). 2021-6-1

[4]
Imaging Technologies to Monitor the Immune System.

Front Immunol. 2020

[5]
Immune cell engineering: opportunities in lung cancer therapeutics.

Drug Deliv Transl Res. 2020-10

[6]
Ligation of the CD44 Glycoform HCELL on Culture-Expanded Human Monocyte-Derived Dendritic Cells Programs Transendothelial Migration.

J Immunol. 2018-6-25

[7]
Labeling of cell therapies: How can we get it right?

Oncoimmunology. 2017-7-20

[8]
Image-guided dendritic cell-based vaccine immunotherapy in murine carcinoma models.

Am J Transl Res. 2017-10-15

[9]
Dendritic cell vaccination for glioblastoma multiforme: review with focus on predictive factors for treatment response.

Immunotargets Ther. 2014-3-13

[10]
Lipopeptide-Coated Iron Oxide Nanoparticles as Potential Glycoconjugate-Based Synthetic Anticancer Vaccines.

ACS Appl Mater Interfaces. 2015-8-12

本文引用的文献

[1]
Strongly magnetic iron nanoparticles improve the diagnosis of small tumours in the reticuloendothelial system by magnetic resonance imaging.

PLoS One. 2013-2-20

[2]
Vaccination with irradiated tumor cells pulsed with an adjuvant that stimulates NKT cells is an effective treatment for glioma.

Clin Cancer Res. 2012-11-12

[3]
Cancer immunotherapy via dendritic cells.

Nat Rev Cancer. 2012-3-22

[4]
In vivo migration of dendritic cells labeled with synthetic superparamagnetic iron oxide.

Int J Nanomedicine. 2011-10-28

[5]
Cellular magnetic resonance imaging of monocyte-derived dendritic cell migration from healthy donors and cancer patients as assessed in a scid mouse model.

Cytotherapy. 2011-9-19

[6]
Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging.

Chem Commun (Camb). 2011-7-15

[7]
Monitoring of in vivo function of superparamagnetic iron oxide labelled murine dendritic cells during anti-tumour vaccination.

PLoS One. 2011-5-27

[8]
Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging.

Angew Chem Int Ed Engl. 2011-4-26

[9]
Magnetic nanoparticles for imaging dendritic cells.

Magn Reson Med. 2010-5

[10]
Dendritic cells treated with lipopolysaccharide up-regulate serine protease inhibitor 6 and remain sensitive to killing by cytotoxic T lymphocytes in vivo.

J Immunol. 2008-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索