Suppr超能文献

控制团簇组装材料的能带隙能量。

Controlling the band gap energy of cluster-assembled materials.

机构信息

Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

出版信息

Acc Chem Res. 2013 Nov 19;46(11):2385-95. doi: 10.1021/ar3002975. Epub 2013 Jun 4.

Abstract

Cluster-assembled materials combine the nanoscale size and composition-dependent properties of clusters, which have highly tunable magnetic and electronic properties useful for a great variety of potential technologies. To understand the emergent properties as clusters are assembled into hierarchical materials, we have synthesized 23 cluster-assembled materials composed of As7(3-)-based motifs and different countercations and measured their band gap energies. We found that the band gap energy varies from 1.09 to 2.21 eV. In addition, we have carried out first principles electronic structure studies to identify the physical mechanisms that enable control of the band gap edges of the cluster assemblies. The choice of counterion has a profound effect on the band gap energy in ionic cluster assemblies. The top of the valence band is localized on the arsenic cluster, while the conduction band edge is located on the alkali metal counterions. Changing the counterion changes the position of the conduction band edge, enabling control of the band gap energy. We can also vary the architecture of the ionic solid by incorporating cryptates as counterions, which provide charge but are separated from the clusters by bulky ligands. Higher dimensionality typically decreases the band gap energy through band broadening; however band gap energies increased upon moving from zero-dimensional (0D) to two-dimensional (2D) assemblies. This is because internal electric fields generated by the counterion preferentially stabilize the adjacent lone pair orbitals that mark the top of the valence band. Thus, the choice of the counterion can control the position of the conduction band edge of ionic cluster assemblies. In addition, the dimensionality of the solid via internal electric fields can control the valence band edge. Through covalently linking arsenic clusters into composite building blocks, we have also been able to tune the band gap energy. We used a theoretical description based on cluster orbital theory to provide microscopic understanding of the electronic character of the composite building blocks and the observed variations in the band gap energy. Also, we have shown how dimeric linkers can be used to control the band gap energy. Lastly, we also investigated the effects of charge transfer complexes of M(CO)3 on the band gap energy.

摘要

团簇组装材料结合了团簇的纳米级尺寸和组成依赖性特性,具有高度可调的磁性和电子特性,可用于各种潜在技术。为了了解团簇组装成分级材料时出现的特性,我们合成了 23 种由基于 As7(3)-的基元和不同抗衡离子组成的团簇组装材料,并测量了它们的能带隙能量。我们发现,能带隙能量在 1.09 到 2.21 eV 之间变化。此外,我们进行了第一性原理电子结构研究,以确定控制团簇组装体能带边缘的物理机制。抗衡离子的选择对离子团簇组装体的能带隙能量有深远影响。价带顶局域在砷团簇上,而导带边缘位于碱金属抗衡离子上。改变抗衡离子会改变导带边缘的位置,从而控制能带隙能量。我们还可以通过将冠醚作为抗衡离子来改变离子固体的结构,冠醚提供电荷但被庞大的配体与团簇隔开。更高的维度通常通过带展宽降低能带隙能量;然而,从零维(0D)到二维(2D)组装体,能带隙能量增加。这是因为抗衡离子产生的内电场优先稳定标记价带顶的相邻孤对轨道。因此,抗衡离子的选择可以控制离子团簇组装体的导带边缘位置。此外,通过内电场可以控制固体的维度,从而控制价带边缘。通过将砷团簇共价连接成复合构建块,我们还能够调节能带隙能量。我们使用基于团簇轨道理论的理论描述来提供对复合构建块电子特性和观察到的能带隙能量变化的微观理解。此外,我们还展示了如何使用二聚体连接体来控制能带隙能量。最后,我们还研究了 M(CO)3 电荷转移配合物对能带隙能量的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验