Suppr超能文献

从头推断测序研究中的分层和局部混合。

De novo inference of stratification and local admixture in sequencing studies.

机构信息

Department of Statistics, The Pennsylvania State University 326 Thomas Building, University Park, PA 16802, USA.

出版信息

BMC Bioinformatics. 2013;14 Suppl 5(Suppl 5):S17. doi: 10.1186/1471-2105-14-S5-S17. Epub 2013 Apr 10.

Abstract

Analysis of population structures and genome local ancestry has become increasingly important in population and disease genetics. With the advance of next generation sequencing technologies, complete genetic variants in individuals' genomes are quickly generated, providing unprecedented opportunities for learning population evolution histories and identifying local genetic signatures at the SNP resolution. The successes of those studies critically rely on accurate and powerful computational tools that can fully utilize the sequencing information. Although many algorithms have been developed for population structure inference and admixture mapping, many of them only work for independent SNPs in genotype or haplotype format, and require a large panel of reference individuals. In this paper, we propose a novel probabilistic method for detecting population structure and local admixture. The method takes input of sequencing data, genotype data and haplotype data. The method characterizes the dependence of genetic variants via haplotype segmentation, such that all variants detected in a sequencing study can be fully utilized for inference. The method further utilizes a infinite-state Bayesian Markov model to perform de novo stratification and admixture inference. Using simulated datasets from HapMapII and 1000Genomes, we show that our method performs superior than several existing algorithms, particularly when limited or no reference individuals are available. Our method is applicable to not only human studies but also studies of other species of interests, for which little reference information is available.Software Availability: http://stat.psu.edu/~yuzhang/software/dbm.tar.

摘要

人口结构和基因组局部亲缘关系的分析在人口和疾病遗传学中变得越来越重要。随着下一代测序技术的进步,个体基因组中的完整遗传变异迅速产生,为了解人口进化历史和识别 SNP 分辨率下的局部遗传特征提供了前所未有的机会。这些研究的成功关键依赖于能够充分利用测序信息的准确而强大的计算工具。虽然已经开发了许多用于群体结构推断和混合映射的算法,但其中许多算法仅适用于基因型或单倍型格式中的独立 SNP,并且需要大量的参考个体。在本文中,我们提出了一种用于检测群体结构和局部混合的新颖概率方法。该方法输入测序数据、基因型数据和单倍型数据。该方法通过单倍型分割来描述遗传变异的依赖性,从而可以充分利用测序研究中检测到的所有变异进行推断。该方法进一步利用无限状态贝叶斯马尔可夫模型进行从头分层和混合推断。使用 HapMapII 和 1000Genomes 中的模拟数据集,我们表明我们的方法优于几种现有的算法,特别是在可用参考个体有限或没有参考个体的情况下。我们的方法不仅适用于人类研究,也适用于其他感兴趣物种的研究,对于这些研究,参考信息很少。

软件可用性

http://stat.psu.edu/~yuzhang/software/dbm.tar。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae35/3622634/f106f266a605/1471-2105-14-S5-S17-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验