Suppr超能文献

基于多元光学计算的浮游植物分类学,第二部分:船载荧光成像光度计的设计与实验方案。

Taxonomic classification of phytoplankton with multivariate optical computing, part II: design and experimental protocol of a shipboard fluorescence imaging photometer.

机构信息

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.

出版信息

Appl Spectrosc. 2013 Jun;67(6):630-9. doi: 10.1366/12-06784.

Abstract

Differential pigmentation between phytoplankton allows use of fluorescence excitation spectroscopy for the discrimination and classification of different taxa. Here, we describe the design and performance of a fluorescence imaging photometer that exploits taxonomic differences for discrimination and classification. The fluorescence imaging photometer works by illuminating individual phytoplankton cells through an asynchronous spinning filter wheel, which produces bar code-like streaks in a fluorescence image. A filter position is covered with an opaque filter to create a reference dark position in the filter wheel rotation that is used to match each fluorescence streak with the corresponding filter. Fluorescence intensities of the imaged streaks are then analyzed for the purpose of spectral analysis, which allows taxonomic classification of the organism that produced the streaks. The theoretical performance and signal-to-noise ratio (SNR) specifications of these MOEs are described in Part I of this series. This report describes optical layout, flow cell design, magnification, depth of field, constraints on filter wheel and flow velocities, procedures for blank subtraction and flat-field correction, the measurement scheme of the instrument, and measurement of SNR as a measurement of filter wheel frequency. This is followed by an analysis of the sources of variance in measurements made by the photometer on the coccolithophore Emiliania huxleyi. We conclude that the SNR of E. huxleyi measurements is not limited by the sensitivity or noise attributes of the measurement system, but by dynamics in the fluorescence efficiency of the E. huxleyi cells. Even so, the minimum SNR requirements given in Part I for the instrument are met.

摘要

浮游植物的色素差异使得荧光激发光谱技术可用于不同分类单元的鉴别和分类。在此,我们描述了一种荧光成像光度计的设计和性能,该光度计利用分类学差异进行鉴别和分类。荧光成像光度计通过异步旋转滤光轮照射单个浮游植物细胞,在荧光图像中产生类似条形码的条纹。滤光轮上的一个滤光片位置被不透明滤光片覆盖,以在滤光轮旋转过程中创建一个参考暗位置,用于将每个荧光条纹与相应的滤光片匹配。然后分析成像条纹的荧光强度,进行光谱分析,从而对产生条纹的生物体进行分类。这些 MOE 的理论性能和信噪比(SNR)规格在本系列的第一部分中进行了描述。本报告描述了光学布局、流动池设计、放大率、景深、滤光轮和流速的限制、空白扣除和平场校正程序、仪器的测量方案以及 SNR 的测量,作为滤光轮频率的测量。接着分析了光度计对颗石藻 Emiliania huxleyi 进行测量时的方差来源。我们得出的结论是,E. huxleyi 测量的 SNR 不受测量系统的灵敏度或噪声属性的限制,而是受 E. huxleyi 细胞荧光效率的动态变化限制。即便如此,仪器在第一部分中给出的最小 SNR 要求仍然得到满足。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验