Suppr超能文献

成纤维细胞 PER2 节律性取决于细胞密度。

Fibroblast PER2 circadian rhythmicity depends on cell density.

机构信息

Department of Psychiatry and Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093-0603, USA.

出版信息

J Biol Rhythms. 2013 Jun;28(3):183-92. doi: 10.1177/0748730413487494.

Abstract

Like neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in the brain, single fibroblasts can function as independent oscillators. In the SCN, synaptic and paracrine signaling among cells creates a robust, synchronized circadian oscillation, whereas there is no evidence for such integration in fibroblast cultures. However, interactions among single-cell fibroblast oscillators cannot be completely excluded, because fibroblasts were not isolated in previous work. In this study, we tested the autonomy of fibroblasts as single-cell circadian oscillators in high- and low-density culture, by single-cell imaging of cells from PER2::LUC circadian reporter mice. We found greatly reduced PER2::LUC rhythmicity in low-density cultures, which could result from lack of either constitutive or rhythmic paracrine signals from neighboring fibroblasts. To discriminate between these 2 possibilities, we mixed PER2::LUC wild-type (WT) cells with nonluminescent, nonrhythmic Bmal1-/- cells, so that density of rhythmic cells was low but overall cell density remained high. In this condition, WT cells showed clear rhythmicity similar to high-density cultures. We also mixed PER2::LUC WT cells with nonluminescent, long period Cry2-/- cells. In this condition, WT cells showed a period no different from cells cultured with rhythmic WT cells or nonrhythmic Bmal1-/- cells. In previous work, we found that low K⁺ suppresses fibroblast rhythmicity, and we and others have found that either low K⁺ or low Ca²⁺ suppresses SCN rhythmicity. Therefore, we attempted to rescue rhythmicity of low-density fibroblasts with high K⁺ (21 mM), high Ca²⁺ (3.6 mM), or conditioned medium. Conditioned medium from high-density fibroblast cultures rescued rhythmicity of low-density cultures, whereas high K⁺ or Ca²⁺ medium did not consistently rescue rhythmicity. These data suggest that fibroblasts require paracrine signals from adjacent cells for normal expression of rhythmicity, but that these signals do not have to be rhythmic, and that rhythmic signals from other cells do not affect the intrinsic periods of fibroblasts.

摘要

与大脑中的主生物钟核(SCN)中的神经元一样,单个成纤维细胞可以作为独立的振荡器发挥作用。在 SCN 中,细胞间的突触和旁分泌信号会产生强大的、同步的昼夜节律振荡,而在成纤维细胞培养物中没有证据表明存在这种整合。然而,不能完全排除单细胞成纤维细胞振荡器之间的相互作用,因为在前一项研究中,没有分离成纤维细胞。在这项研究中,我们通过对 PER2::LUC 昼夜节律报告小鼠的单细胞成像,在高和低密度培养中测试了成纤维细胞作为单细胞生物钟振荡器的自主性。我们发现,在低密度培养中,PER2::LUC 的节律性大大降低,这可能是由于缺乏来自邻近成纤维细胞的组成型或节律性旁分泌信号。为了区分这两种可能性,我们将 PER2::LUC 野生型(WT)细胞与非发光、非节律性 Bmal1-/-细胞混合,使节律性细胞的密度较低,但总体细胞密度仍然较高。在这种情况下,WT 细胞表现出与高密度培养相似的清晰节律性。我们还将 PER2::LUC WT 细胞与非发光、长周期 Cry2-/-细胞混合。在这种情况下,WT 细胞的周期与与节律性 WT 细胞或非节律性 Bmal1-/-细胞培养的细胞没有区别。在之前的工作中,我们发现低 K⁺会抑制成纤维细胞的节律性,我们和其他人发现低 K⁺或低 Ca²⁺会抑制 SCN 的节律性。因此,我们试图用高 K⁺(21 mM)、高 Ca²⁺(3.6 mM)或条件培养基来挽救低密度成纤维细胞的节律性。高密度成纤维细胞培养物的条件培养基挽救了低密度培养物的节律性,而高 K⁺或 Ca²⁺培养基并不总是能挽救节律性。这些数据表明,成纤维细胞需要来自相邻细胞的旁分泌信号来正常表达节律性,但这些信号不必是节律性的,而且来自其他细胞的节律性信号不会影响成纤维细胞的固有周期。

相似文献

1
Fibroblast PER2 circadian rhythmicity depends on cell density.
J Biol Rhythms. 2013 Jun;28(3):183-92. doi: 10.1177/0748730413487494.
2
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
eNeuro. 2017 Aug 18;4(4). doi: 10.1523/ENEURO.0160-17.2017. eCollection 2017 Jul-Aug.
3
Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.
Neurosci Lett. 2016 Apr 21;619:49-53. doi: 10.1016/j.neulet.2016.02.030. Epub 2016 Feb 27.
4
Valproic acid phase shifts the rhythmic expression of Period2::Luciferase.
J Biol Rhythms. 2011 Dec;26(6):541-51. doi: 10.1177/0748730411419775.
5
IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
J Biol Rhythms. 2015 Oct;30(5):396-407. doi: 10.1177/0748730415593377. Epub 2015 Jul 6.
7
Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
Eur J Neurosci. 2011 Apr;33(8):1533-40. doi: 10.1111/j.1460-9568.2011.07629.x. Epub 2011 Mar 2.

引用本文的文献

1
Circadian clock communication during homeostasis and ageing.
Nat Rev Mol Cell Biol. 2025 Apr;26(4):314-331. doi: 10.1038/s41580-024-00802-3. Epub 2025 Jan 3.
2
The Relevance of Circadian Clocks to Stem Cell Differentiation and Cancer Progression.
NeuroSci. 2022 Mar 29;3(2):146-165. doi: 10.3390/neurosci3020012. eCollection 2022 Jun.
3
Hierarchy or Heterarchy of Mammalian Circadian Timekeepers?
J Biol Rhythms. 2024 Dec;39(6):513-534. doi: 10.1177/07487304241286573. Epub 2024 Oct 24.
5
Fibroblasts as an in vitro model of circadian genetic and genomic studies.
Mamm Genome. 2024 Sep;35(3):432-444. doi: 10.1007/s00335-024-10050-7. Epub 2024 Jul 3.
6
TRPA1 Ion Channel Mediates the Analgesic Effects of Acupuncture at the ST36 Acupoint in Mice Suffering from Arthritis.
J Inflamm Res. 2024 Mar 20;17:1823-1837. doi: 10.2147/JIR.S455699. eCollection 2024.
7
Fibroblasts as an in vitro model of circadian genetic and genomic studies: A temporal analysis.
bioRxiv. 2024 Mar 5:2023.05.19.541494. doi: 10.1101/2023.05.19.541494.
8
Circadian oscillation in primary cilium length by clock genes regulates fibroblast cell migration.
EMBO Rep. 2023 Dec 6;24(12):e56870. doi: 10.15252/embr.202356870. Epub 2023 Nov 16.
10
The seasons within: a theoretical perspective on photoperiodic entrainment and encoding.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):549-564. doi: 10.1007/s00359-023-01669-z. Epub 2023 Sep 2.

本文引用的文献

1
Cellular bioluminescence imaging.
Cold Spring Harb Protoc. 2012 Aug 1;2012(8):pdb.top070607. doi: 10.1101/pdb.top070607.
2
Fibroblast circadian rhythms of PER2 expression depend on membrane potential and intracellular calcium.
Chronobiol Int. 2012 Jul;29(6):653-64. doi: 10.3109/07420528.2012.679330.
3
Involvement of stress kinase mitogen-activated protein kinase kinase 7 in regulation of mammalian circadian clock.
J Biol Chem. 2012 Mar 9;287(11):8318-26. doi: 10.1074/jbc.M111.308908. Epub 2012 Jan 20.
4
A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14306-11. doi: 10.1073/pnas.1101767108. Epub 2011 Jul 25.
5
Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.
Trends Neurosci. 2011 Jul;34(7):349-58. doi: 10.1016/j.tins.2011.05.003. Epub 2011 Jun 12.
6
Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
Eur J Neurosci. 2011 Apr;33(8):1533-40. doi: 10.1111/j.1460-9568.2011.07629.x. Epub 2011 Mar 2.
7
Emergence of noise-induced oscillations in the central circadian pacemaker.
PLoS Biol. 2010 Oct 12;8(10):e1000513. doi: 10.1371/journal.pbio.1000513.
8
Temperature as a universal resetting cue for mammalian circadian oscillators.
Science. 2010 Oct 15;330(6002):379-85. doi: 10.1126/science.1195262.
9
Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16493-8. doi: 10.1073/pnas.0902768106. Epub 2009 Sep 9.
10
Increased coherence of circadian rhythms in mature fibroblast cultures.
J Biol Rhythms. 2008 Dec;23(6):483-8. doi: 10.1177/0748730408326682.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验