Division of Medicinal & Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City IA 52242, USA.
J Control Release. 2013 Sep 28;170(3):325-33. doi: 10.1016/j.jconrel.2013.05.024. Epub 2013 Jun 2.
The pharmacokinetics (PK), biodistribution and metabolism of non-viral gene delivery systems administered systemically are directly related to in vivo efficacy. The magnitude of luciferase expression in the liver of mice following a tail vein dose of a polyplex, composed of 1 μg of pGL3 in complex with a polyethylene glycol (PEG) polyacridine peptide, followed by a delayed hydrodynamic (HD) stimulation (1-9 h), depends on the HD stimulation delay time and the structure of the polyacridine peptide. As demonstrated in the present study, the PEG length and the type of chemical linkage joining PEG to the polyacridine peptide dramatically influence the in vivo gene transfer efficiency. To understand how PEG length, linkage and location influence gene transfer efficiency, detailed PK, biodistribution and HD-stimulated gene expression experiments were performed on polyplexes prepared with an optimized polyacridine peptide modified through a single terminal Cys or Pen (penicillamine) with a PEG chain of average length of 2, 5, 10, 20, or 30 kDa. The chemical linkage was examined by attaching PEG(5 kDa) to the polyacridine peptide through a thiol-thiol (SS), thiol-maleimide (SM), thiol-vinylsulfone (SV), thiol-acetamide (SA), penicillamine-thiol-maleimide (PM) or penicillamine-thiol-thiol (PS). The influence of PEG location was analyzed by attaching PEG(5 kDa) to the polyacridine peptide through a C-terminal, N-terminal, or a middle Cys residue. The results established rapid metabolism of polyplexes containing SV and SA chemical linkages that leads to a decreased polyplex PK half-life and a complete loss of HD-stimulated gene expression at delay times of 5 h. Conversely, polyplexes containing PM, PS, and SM chemical linkages were metabolically stable, allowing robust HD-stimulated expression at delay times up to 5h post-polyplex administration. The location of PEG(₅ kDa) within the polyacridine peptide exerted only a minor influence on the gene transfer of polyplexes. However, varying the PEG length from 2, 5, 10, 20, or 30 kDa dramatically altered polyplex biodistribution, with a 30 kDa PEG maximally blocking liver uptake to 13% of dose, while maintaining the ability to mediate HD-stimulated gene expression. The combination of results establishes important relationships between PEGylated polyacridine peptide structure, physical properties, in vivo metabolism, PK and biodistribution resulting in an optimal PEG length and linkage that leads to a robust HD-stimulated gene expression in mice.
系统给药的非病毒基因传递系统的药代动力学(PK)、生物分布和代谢与体内疗效直接相关。在尾静脉给予由 1μg pGL3 与聚乙二醇(PEG)聚吖啶肽组成的多聚物后,延迟水力(HD)刺激(1-9 小时),肝脏中荧光素酶的表达量取决于 HD 刺激延迟时间和聚吖啶肽的结构。如本研究所示,PEG 长度和将 PEG 连接到聚吖啶肽的化学连接方式极大地影响体内基因转移效率。为了了解 PEG 长度、连接和位置如何影响基因转移效率,我们使用通过单个末端半胱氨酸或 Pen(青霉胺)修饰的优化聚吖啶肽制备了多聚物,并进行了详细的 PK、生物分布和 HD 刺激基因表达实验,聚乙二醇链的平均长度为 2、5、10、20 或 30 kDa。通过硫醇-硫醇(SS)、硫醇-马来酰亚胺(SM)、硫醇-乙烯砜(SV)、硫醇-乙酰胺(SA)、青霉胺-硫醇-马来酰亚胺(PM)或青霉胺-硫醇-硫醇(PS)将 PEG(5 kDa)连接到聚吖啶肽上,检查了化学连接。通过将 PEG(5 kDa)连接到聚吖啶肽的 C 端、N 端或中间半胱氨酸残基上来分析 PEG 位置的影响。结果确立了含有 SV 和 SA 化学连接的多聚物的快速代谢,导致多聚物 PK 半衰期降低,并在 5 小时的延迟时间内完全丧失 HD 刺激基因表达。相反,含有 PM、PS 和 SM 化学连接的多聚物代谢稳定,允许在多聚物给药后 5 小时内进行强大的 HD 刺激表达。PEG(₅ kDa)在聚吖啶肽内的位置仅对多聚物的基因转移产生微小影响。然而,PEG 长度从 2、5、10、20 或 30 kDa 的变化极大地改变了多聚物的生物分布,30 kDa PEG 将肝脏摄取量最大程度地抑制至 13%的剂量,同时保持介导 HD 刺激基因表达的能力。结果组合建立了 PEG 化聚吖啶肽结构、物理性质、体内代谢、PK 和生物分布之间的重要关系,从而确定了最佳的 PEG 长度和连接,导致在小鼠中进行强大的 HD 刺激基因表达。