Suppr超能文献

弹性蛋白和胶原蛋白在人体胸主动脉中层软化行为中的作用。

The role of elastin and collagen in the softening behavior of the human thoracic aortic media.

机构信息

Institute of Biomechanics, Center of Biomedical Engineering, Graz University of Technology, Graz, Austria.

出版信息

J Biomech. 2013 Jul 26;46(11):1859-65. doi: 10.1016/j.jbiomech.2013.04.025. Epub 2013 Jun 2.

Abstract

In a previous study we were able to accurately fit experimental data on arterial tissues at supra-physiological loads using a material model that accounts for softening/damage only in the portion of the model associated with the collagen fibers (Weisbecker et al., 2012). Naturally, this result leads to the hypothesis that the softening behavior is related only to the collagen fibers, and not to the matrix material. In this study we test this hypothesis by conducting uniaxial extension tests on elastase and collagenase treated tissues and on untreated control specimens from the media of human thoracic aortas. We relate structural changes in the tissue after enzyme treatment to changes in the corresponding mechanical behavior. Collagenase treated tissue does not exhibit any softening behavior under quasi-static cyclic loading, a result supporting our hypothesis. Conversely, elastase treated tissue exhibits continuous softening under the same loading conditions, indicating that the integrity of the tissue is destroyed upon removal of the elastin. Finally, we fit isotropic and anisotropic constitutive models to the mechanical response of the collagenase treated arterial tissue, while our anisotropic model better approximates the response of collagenase treated arterial tissues, we show that an isotropic matrix model is sufficient to accurately reproduce the mechanical response of untreated control specimens, consistent with current practice in the literature.

摘要

在之前的一项研究中,我们成功地使用了一种材料模型来准确拟合超生理负荷下的动脉组织实验数据,该模型仅考虑与胶原纤维相关联的模型部分的软化/损伤(Weisbecker 等人,2012 年)。自然而然,这一结果导致了这样的假设,即软化行为仅与胶原纤维有关,而与基质材料无关。在这项研究中,我们通过对弹性蛋白酶和胶原酶处理的组织以及未经处理的来自人胸主动脉中层的对照标本进行单轴拉伸测试来检验这一假设。我们将酶处理后组织中的结构变化与相应的力学行为变化联系起来。胶原酶处理的组织在准静态循环加载下没有表现出任何软化行为,这一结果支持我们的假设。相反,弹性蛋白酶处理的组织在相同的加载条件下表现出连续的软化,表明在去除弹性蛋白时组织的完整性被破坏。最后,我们将各向同性和各向异性本构模型拟合到胶原酶处理的动脉组织的力学响应中,虽然我们的各向异性模型更好地近似了胶原酶处理的动脉组织的响应,但我们表明各向同性基质模型足以准确地再现未经处理的对照标本的力学响应,这与文献中的当前实践一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验