Suppr超能文献

能否利用医院出院数据库来监测缺血性脑卒中的发病情况?

Can hospital discharge databases be used to follow ischemic stroke incidence?

机构信息

Pôle Information Médicale Evaluation Recherche, Hospices Civils de Lyon, Lyon, France.

出版信息

Stroke. 2013 Jul;44(7):1770-4. doi: 10.1161/STROKEAHA.113.001300. Epub 2013 Jun 4.

Abstract

BACKGROUND AND PURPOSE

Because acute ischemic strokes (ISs) are mainly hospitalized, hospital discharge data could be used to routinely follow their incidence management. We aimed to assess sensitivity and positive predictive value of the French hospital discharge database (HDD) to identify patients with acute IS using a prospective and exhaustive cohort (AVC69) of acute IS cases.

METHODS

A selection algorithm based on IS diagnosis coded with the International Classification of Diseases (ICD-10) and cerebral imaging codes was used to identify all hospital stays with the primary diagnosis of IS in the HDD of the university hospitals of the Rhône area. Cases identified through HDD search were compared with IS cases identified through an exhaustive cohort study conducted in the Rhône district and confirmed on medical records review.

RESULTS

There were 465 confirmed cases of IS hospitalized in 1 of the 4 university hospitals during the study period. The HDD search identified 313 among those (true-positive cases) but missed 152 cases (false-negative cases). The sensitivity of the HDD search was 67.3% (95% confidence interval, 63.1-71.5), and the positive predictive value was 95.1% (95% confidence interval, 92.8-97.4). Additionally, HDD search retrieved 16 cases, which were not eventually IS (false positives). Sensitivity was better when patients were hospitalized in neurological departments.

CONCLUSIONS

The lack of sensitivity to identify acute IS patients through HDD search does not seem to be accurate enough to validate the use of these data for incidence estimates. Efforts have to be made to improve the coding quality.

摘要

背景与目的

由于急性缺血性脑卒中(IS)主要住院治疗,因此可使用医院出院数据对其发病率进行常规监测。本研究旨在使用前瞻性、详尽的急性 IS 病例队列(AVC69)评估法国医院出院数据库(HDD)识别急性 IS 患者的灵敏度和阳性预测值。

方法

基于疾病国际分类(ICD-10)编码和脑影像学代码的 IS 诊断,制定选择算法,用于在罗纳地区大学附属医院的 HDD 中识别所有以 IS 为主要诊断的住院病例。通过 HDD 搜索识别的病例与在罗纳地区开展的详尽队列研究中识别并经病历审查证实的 IS 病例进行比较。

结果

在研究期间,4 所大学附属医院中有 465 例确诊的 IS 住院患者。HDD 搜索确定了其中的 313 例(真阳性病例),但遗漏了 152 例(假阴性病例)。HDD 搜索的灵敏度为 67.3%(95%置信区间,63.1%-71.5%),阳性预测值为 95.1%(95%置信区间,92.8%-97.4%)。此外,HDD 搜索还检索到 16 例最终不是 IS 的病例(假阳性)。当患者在神经科住院时,灵敏度更高。

结论

通过 HDD 搜索识别急性 IS 患者的灵敏度不高,不够准确,无法验证使用这些数据进行发病率估计。需要努力提高编码质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验