Li Linxin, Binney Lucy E, Luengo-Fernandez Ramon, Silver Louise E, Rothwell Peter M
Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.
Eur Stroke J. 2020 Mar;5(1):26-35. doi: 10.1177/2396987319881017. Epub 2019 Oct 14.
Administrative hospital diagnostic coding data are increasingly being used in identifying incident and prevalent stroke cases, for outcome audit and for 'big data' research. Validity of administrative coding has varied in previous studies, but little is known about the temporal trends of coding accuracy, which could bias analyses.
Using all incident and recurrent strokes in a population-based cohort (Oxford Vascular Study/OXVASC) with multiple sources of ascertainment as the reference, we determined the temporal trends in sensitivity and positive predictive value of hospital diagnostic codes for identifying acute stroke from 2002 to 2017.
Of 1883 hospitalised strokes, 1341 (71.2%) were correctly identified by coding. Sensitivity of coding improved over time for all strokes (p = 0.005) and for incident cases (p = 0.002). Of 1995 apparent stroke admissions identified by International Classification of Disease-10 stroke codes (I60-I68), 1588 (79.6%) used the stroke-specific codes (I60-I61/I63-I64). Positive predictive value was higher with the use of specific codes (83.2% vs. 69.2% for all codes) and highest if combined with the first admission only (88.5%), particularly during more recent time periods (2014-2017 = 90.3%). Of 2254 OXVASC incident strokes, 833 (37.0%) were not hospitalised. Sensitivity of coding increased over time for non-disabling stroke (p = 0.001), but not for disabling/fatal stroke (p = 0.40).
Although accuracy of hospital diagnostic coding for identifying acute strokes improved over the last 15 years, residual insensitivity supports linkage to other sources in large epidemiological studies. Moreover, differences in the time trends of coding sensitivity in relation to stroke severity might bias studies of trends in stroke outcome if only administrative coding is used.
医院行政诊断编码数据越来越多地用于识别新发和现患中风病例、进行结局审计以及开展“大数据”研究。以往研究中行政编码的有效性各不相同,但对于可能导致分析出现偏差的编码准确性的时间趋势却知之甚少。
以基于人群的队列研究(牛津血管研究/OXVASC)中所有新发和复发中风病例为参考,这些病例有多种确诊来源,我们确定了2002年至2017年期间医院诊断编码识别急性中风的敏感性和阳性预测值的时间趋势。
在1883例住院中风病例中,1341例(71.2%)通过编码被正确识别。所有中风病例(p = 0.005)以及新发病例(p = 0.002)的编码敏感性均随时间提高。在国际疾病分类第10版中风编码(I60 - I68)识别出的1995例疑似中风入院病例中,1588例(79.6%)使用了中风特异性编码(I60 - I61/I63 - I64)。使用特异性编码时阳性预测值更高(所有编码为69.2%,特异性编码为83.2%),若仅结合首次入院情况则最高(88.5%),特别是在最近时间段(2014 - 2017年 = 90.3%)。在2254例OXVASC新发中风病例中,833例(37.0%)未住院。非致残性中风的编码敏感性随时间增加(p = 0.001),但致残性/致命性中风并非如此(p = 0.40)。
尽管在过去15年中,医院诊断编码识别急性中风的准确性有所提高,但残留的不敏感性表明在大型流行病学研究中仍需与其他来源的数据进行关联。此外,如果仅使用行政编码,编码敏感性在时间趋势上与中风严重程度的差异可能会使中风结局趋势研究产生偏差。