Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE/CNPEM , 13083-970 Campinas, São Paulo, Brazil.
J Agric Food Chem. 2013 Jun 19;61(24):5841-7. doi: 10.1021/jf401243c. Epub 2013 Jun 5.
Plant cell walls contain water, especially under biological and wet processing conditions. The present work characterizes this water in tissues of sugarcane stalks. Environmental scanning electron microscopy shows tissue deformation upon drying. Dynamic vapor sorption determines the equilibrium and kinetics of moisture uptake. Thermoporometry by differential scanning calorimetry quantifies water in nanoscale pores. Results show that cell walls from top internodes of stalks are more deformable, slightly more sorptive to moisture, and substantially more porous. These differences of top internode are attributed to less lignified walls, which is confirmed by lower infrared spectral signal from aromatics. Furthermore, cell wall nanoscale porosity, an architectural and not directly compositional characteristic, is shown to be tissue-specific. Nanoscale porosities are ranked as follows: pith parenchyma > pith vascular bundles > rind. This ranking coincides with wall reactivity and digestibility in grasses, suggesting that nanoscale porosity is a major determinant of wall recalcitrance.
植物细胞壁含有水分,尤其是在生物和湿加工条件下。本工作对甘蔗茎组织中的这种水分进行了表征。环境扫描电子显微镜显示干燥时组织变形。动态蒸汽吸附法确定了水分吸收的平衡和动力学。差示扫描量热法的热压法定量了纳米级孔隙中的水分。结果表明,来自茎顶部节间的细胞壁更具可变形性,对水分的吸附略高,并且具有更大的多孔性。这些顶部节间的差异归因于木质素化细胞壁较少,这可以通过芳烃的红外光谱信号较低得到证实。此外,细胞壁纳米级孔隙率是一种结构特征,而不是直接的组成特征,它被证明是组织特异性的。纳米级孔隙率的排序如下:髓部薄壁组织>髓部维管束>表皮。这种排序与草类中的细胞壁反应性和可消化性一致,表明纳米级孔隙率是细胞壁抗降解性的主要决定因素。