Suppr超能文献

通过听觉辨别训练来完善声音方位的皮质表征。

Refining cortical representation of sound azimuths by auditory discrimination training.

机构信息

Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Sciences, East China Normal University, Shanghai 200062, China.

出版信息

J Neurosci. 2013 Jun 5;33(23):9693-8. doi: 10.1523/JNEUROSCI.0158-13.2013.

Abstract

Although training-based auditory cortical plasticity in the adult brain has been previously demonstrated in multiparametric sound domains, neurochemical mechanisms responsible for this form of plasticity are not well understood. In this study, we trained adult rats to identify a target sound stimulus at a specific azimuth angle by using a reward-contingent auditory discrimination task. We found that auditory spatial discrimination training significantly enhanced representation of sound azimuths in the primary auditory cortex, as shown by sharper azimuth-selective curves and more evenly distributed best angles of cortical neurons. Training also facilitated long-term potentiation of field potentials in the primary auditory cortex induced by theta burst stimulation of the white matter. In parallel, there were significant alterations in expression levels of certain cortical GABA(A) and NMDA receptor subunits, resulting in a marked decrease in the level of GABA(A) relative to NMDA receptors. These changes in the expression profile of inhibitory and excitatory neurotransmitter receptor subunits might enhance synaptic transmission, thereby facilitating training-induced cortical plasticity in the spatial domain.

摘要

尽管先前已经在多参数声音领域证明了成人大脑中的基于训练的听觉皮质可塑性,但负责这种可塑性的神经化学机制尚不清楚。在这项研究中,我们通过使用奖励相关的听觉辨别任务来训练成年大鼠识别特定方位角的目标声音刺激。我们发现,听觉空间辨别训练显著增强了初级听觉皮层对声音方位的表示,表现为方位选择性曲线更陡峭,皮质神经元的最佳角度分布更均匀。训练还促进了由白质θ爆发刺激引起的初级听觉皮层场电位的长时程增强。同时,某些皮质 GABA(A)和 NMDA 受体亚基的表达水平发生了显著变化,导致 GABA(A)相对于 NMDA 受体的水平明显降低。这种抑制性和兴奋性神经递质受体亚基表达谱的变化可能会增强突触传递,从而促进空间域中训练诱导的皮质可塑性。

相似文献

1
Refining cortical representation of sound azimuths by auditory discrimination training.
J Neurosci. 2013 Jun 5;33(23):9693-8. doi: 10.1523/JNEUROSCI.0158-13.2013.
3
Reversal of Age-Related Changes in Cortical Sound-Azimuth Selectivity with Training.
Cereb Cortex. 2020 Mar 14;30(3):1768-1778. doi: 10.1093/cercor/bhz201.
4
Developmentally degraded directional selectivity of the auditory cortex can be restored by auditory discrimination training in adults.
Behav Brain Res. 2011 Dec 1;225(2):596-602. doi: 10.1016/j.bbr.2011.08.033. Epub 2011 Aug 30.
6
Evoked Response Strength in Primary Auditory Cortex Predicts Performance in a Spectro-Spatial Discrimination Task in Rats.
J Neurosci. 2019 Jul 31;39(31):6108-6121. doi: 10.1523/JNEUROSCI.0041-18.2019. Epub 2019 Jun 7.
9
Environmental enrichment improves behavioral performance and auditory spatial representation of primary auditory cortical neurons in rat.
Neurobiol Learn Mem. 2009 May;91(4):366-76. doi: 10.1016/j.nlm.2009.01.005. Epub 2009 Jan 30.
10
Representation of auditory space by cortical neurons in awake cats.
J Neurosci. 2003 Sep 24;23(25):8649-63. doi: 10.1523/JNEUROSCI.23-25-08649.2003.

引用本文的文献

1
Acoustic enrichment prevents early life stress-induced disruptions in sound azimuth processing.
J Neurosci. 2025 Mar 24;45(18). doi: 10.1523/JNEUROSCI.2287-24.2025.
2
Pairing with Enriched Sound Exposure Restores Auditory Processing Degraded by an Antidepressant.
J Neurosci. 2023 Apr 19;43(16):2850-2859. doi: 10.1523/JNEUROSCI.2027-22.2023. Epub 2023 Mar 22.
3
Unilateral Conductive Hearing Loss Disrupts the Developmental Refinement of Binaural Processing in the Rat Primary Auditory Cortex.
Front Neurosci. 2021 Nov 19;15:762337. doi: 10.3389/fnins.2021.762337. eCollection 2021.
4
Positive impacts of early auditory training on cortical processing at an older age.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6364-6369. doi: 10.1073/pnas.1707086114. Epub 2017 May 30.
5
Associative learning and sensory neuroplasticity: how does it happen and what is it good for?
Learn Mem. 2015 Oct 15;22(11):567-76. doi: 10.1101/lm.039636.115. Print 2015 Nov.
6
The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood.
Mol Brain. 2015 Aug 19;8:49. doi: 10.1186/s13041-015-0141-y.
7
Perceptual Training Restores Impaired Cortical Temporal Processing Due to Lead Exposure.
Cereb Cortex. 2016 Jan;26(1):334-345. doi: 10.1093/cercor/bhu258. Epub 2014 Nov 7.
8
Environmental acoustic enrichment promotes recovery from developmentally degraded auditory cortical processing.
J Neurosci. 2014 Apr 16;34(16):5406-15. doi: 10.1523/JNEUROSCI.5310-13.2014.
9
Auditory map plasticity: diversity in causes and consequences.
Curr Opin Neurobiol. 2014 Feb;24(1):143-56. doi: 10.1016/j.conb.2013.11.009. Epub 2013 Dec 13.

本文引用的文献

1
Role of cholinergic-muscarinic receptors in visual discrimination performance of rats: importance of stimulus load.
Behav Brain Res. 2013 Feb 1;238:23-9. doi: 10.1016/j.bbr.2012.10.005. Epub 2012 Oct 16.
2
Plasticity of spatial hearing: behavioural effects of cortical inactivation.
J Physiol. 2012 Aug 15;590(16):3965-86. doi: 10.1113/jphysiol.2011.222828. Epub 2012 Apr 30.
4
5
Developmentally degraded directional selectivity of the auditory cortex can be restored by auditory discrimination training in adults.
Behav Brain Res. 2011 Dec 1;225(2):596-602. doi: 10.1016/j.bbr.2011.08.033. Epub 2011 Aug 30.
6
Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex.
J Neurosci. 2011 Apr 13;31(15):5625-34. doi: 10.1523/JNEUROSCI.6470-10.2011.
7
Auditory cortex spatial sensitivity sharpens during task performance.
Nat Neurosci. 2011 Jan;14(1):108-14. doi: 10.1038/nn.2713. Epub 2010 Dec 12.
8
Lynx1, a cholinergic brake, limits plasticity in adult visual cortex.
Science. 2010 Nov 26;330(6008):1238-40. doi: 10.1126/science.1195320. Epub 2010 Nov 11.
10
Training-induced plasticity in the visual cortex of adult rats following visual discrimination learning.
Learn Mem. 2010 Aug 3;17(8):394-401. doi: 10.1101/lm.1787110. Print 2010 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验