Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
J Neurosci. 2013 Jun 5;33(23):9734-42. doi: 10.1523/JNEUROSCI.5632-12.2013.
Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.
发作性睡病的特征是过度嗜睡和猝倒,这是一种在清醒状态下突然发生的肌肉无力,被认为是快速眼动睡眠肌肉弛缓进入清醒状态的侵入。猝倒最引人注目的方面之一是,它通常是由强烈的、通常是积极的情绪引发的,但对于积极情绪触发肌肉弛缓的神经通路知之甚少。我们假设杏仁核在猝倒中具有功能重要性,因为杏仁核在处理情绪刺激方面起作用,并且它包含在猝倒期间活跃的神经元。使用小鼠的顺行和逆行示踪,我们发现杏仁核中央核中的 GABA 能神经元大量支配维持清醒肌肉张力的神经元,如腹外侧导水管周围灰质、外侧脑桥被盖、蓝斑和中缝背核中的神经元。然后,我们发现双侧、兴奋性毒性损伤杏仁核显著减少了食欲素敲除小鼠(发作性睡病的一种模型)的猝倒。这些损伤不会改变基本的睡眠-觉醒行为,但会大大减少猝倒的触发。损伤还减少了与高唤醒和积极情绪相关的条件(即滚轮运行和巧克力)引发的猝倒事件。这些观察结果表明,杏仁核是猝倒基础电路的功能重要组成部分,并表明杏仁核活动增加以响应情绪刺激可能通过抑制抑制肌肉弛缓的脑干区域直接引发猝倒。