Department of Life Science, WCU Program, Pohang University of Science and Technology, Pohang, 790-784, Korea.
Mol Cells. 2013 Jul;36(1):39-46. doi: 10.1007/s10059-013-0013-1. Epub 2013 Jun 3.
Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4°C, 5.1°C and 10.0°C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.
蛋白质已经进化到可以补偿有害突变的程度。然而,蛋白质缺陷的补偿机制还不是很清楚。本文使用酮固醇异构酶(KSI)研究了第二点突变如何恢复有缺陷的突变体功能和稳定性。先前的结果表明,Y30F 突变通过将 Y14F、Y55F 和 Y14F/Y55F 突变体的催化活性分别提高 23、3 和 1.3 倍,以及 Y55F 突变体的稳定性提高 3.3kcal/mol,从而挽救了 Y14F、Y55F 和 Y14F/Y55F 突变体。为了更好地理解这些观察结果,我们系统地研究了 Y30F 突变对这些突变体的详细结构和热力学效应。之前已经解决了野生型和其他突变 KSIs 的 2.0 和 1.8 个晶体结构。结构分析表明,Y30F 突变部分恢复了这些突变 KSI 的活性位点裂缝。Y30F 突变还分别使 Y14F 和 Y14F/Y55F 突变体的稳定性提高了 3.2 和 4.3kcal/mol,使 Y14F、Y55F 和 Y14F/Y55F 突变体的熔点分别提高了 6.4°C、5.1°C 和 10.0°C。Y30F 突变对稳定性的补偿效应可能是由于改善了疏水性相互作用,因为从 Tyr30 上去除一个羟基基团会导致邻近残基的运动引起局部紧凑,并增强与活性位点周围疏水性残基的相互作用。总之,我们的结果表明,受干扰的活性位点几何形状的恢复和有利的疏水性相互作用介导了 Y30F 作为第二点抑制因子的作用。