Suppr超能文献

氢键网络在光合作用产氧中起催化作用。

A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution.

机构信息

Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6112-7. doi: 10.1073/pnas.1200093109. Epub 2012 Apr 2.

Abstract

In photosystem II, oxygen evolution occurs by the accumulation of photo-induced oxidizing equivalents at the oxygen-evolving complex (OEC). The sequentially oxidized states are called the S(0)-S(4) states, and the dark stable state is S(1). Hydrogen bonds to water form a network around the OEC; this network is predicted to involve multiple peptide carbonyl groups. In this work, we tested the idea that a network of hydrogen bonded water molecules plays a catalytic role in water oxidation. As probes, we used OEC peptide carbonyl frequencies, the substrate-based inhibitor, ammonia, and the sugar, trehalose. Reaction-induced FT-IR spectroscopy was used to describe the protein dynamics associated with the S(1) to S(2) transition. A shift in an amide CO vibrational frequency (1664 (S(1)) to 1653 (S(2)) cm(-1)) was observed, consistent with an increase in hydrogen bond strength when the OEC is oxidized. Treatment with ammonia/ammonium altered these CO vibrational frequencies. The ammonia-induced spectral changes are attributed to alterations in hydrogen bonding, when ammonia/ammonium is incorporated into the OEC hydrogen bond network. The ammonia-induced changes in CO frequency were reversed or blocked when trehalose was substituted for sucrose. This trehalose effect is attributed to a displacement of ammonia molecules from the hydrogen bond network. These results imply that ammonia, and by extension water, participate in a catalytically essential hydrogen bond network, which involves OEC peptide CO groups. Comparison to the ammonia transporter, AmtB, reveals structural similarities with the bound water network in the OEC.

摘要

在光系统 II 中,氧气的产生是通过在氧释放复合体(OEC)处积累光诱导的氧化当量来实现的。依次被氧化的状态称为 S(0)-S(4)态,而暗稳定态是 S(1)。与水形成氢键的网络围绕着 OEC;这个网络被预测涉及多个肽羰基。在这项工作中,我们测试了氢键水分子网络在水氧化中起催化作用的想法。作为探针,我们使用了 OEC 肽羰基频率、基于底物的抑制剂氨和糖海藻糖。反应诱导的 FT-IR 光谱用于描述与 S(1)到 S(2)转变相关的蛋白质动力学。酰胺 CO 振动频率(1664(S(1)) 至 1653(S(2)) cm(-1)) 的移动与 OEC 被氧化时氢键强度的增加一致。用氨/铵处理改变了这些 CO 振动频率。氨诱导的光谱变化归因于当氨/铵被整合到 OEC 氢键网络中时氢键的改变。当用海藻糖代替蔗糖时,氨诱导的 CO 频率变化被逆转或阻断。这种海藻糖效应归因于氨分子从氢键网络中的置换。这些结果表明,氨,并且可以扩展到水,参与了一种催化必需的氢键网络,该网络涉及 OEC 肽 CO 基团。与氨转运蛋白 AmtB 的比较揭示了 OEC 中结合水网络的结构相似性。

相似文献

1
A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution.氢键网络在光合作用产氧中起催化作用。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6112-7. doi: 10.1073/pnas.1200093109. Epub 2012 Apr 2.
2
Detection of an intermediary, protonated water cluster in photosynthetic oxygen evolution.在光合作用产氧中检测到中介质子化水团簇。
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10634-9. doi: 10.1073/pnas.1306532110. Epub 2013 Jun 11.
10
Proton exit pathways surrounding the oxygen evolving complex of photosystem II.质子在光合系统 II 放氧复合物周围的出线途径。
Biochim Biophys Acta Bioenerg. 2021 Aug 1;1862(8):148446. doi: 10.1016/j.bbabio.2021.148446. Epub 2021 May 5.

引用本文的文献

3
Does Oxygen Feature Chalcogen Bonding?氧气是否具有硫属元素键合特征?
Molecules. 2019 Aug 30;24(17):3166. doi: 10.3390/molecules24173166.
7
Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.快速采样氢键网络用于计算蛋白质设计。
J Chem Theory Comput. 2018 May 8;14(5):2751-2760. doi: 10.1021/acs.jctc.8b00033. Epub 2018 Apr 20.
9
Water is an active matrix of life for cell and molecular biology.水是细胞和分子生物学的生命活动基质。
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13327-13335. doi: 10.1073/pnas.1703781114. Epub 2017 Jun 7.

本文引用的文献

10
Effect of trehalose on protein structure.海藻糖对蛋白质结构的影响。
Protein Sci. 2009 Jan;18(1):24-36. doi: 10.1002/pro.3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验