Suppr超能文献

大鼠初级听觉皮层中与经验相关的超声波发声频率过度表达。

Experience-dependent overrepresentation of ultrasonic vocalization frequencies in the rat primary auditory cortex.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-3190, USA.

出版信息

J Neurophysiol. 2013 Sep;110(5):1087-96. doi: 10.1152/jn.00230.2013. Epub 2013 Jun 5.

Abstract

Cortical sensory representation is highly adaptive to the environment, and prevalent or behaviorally important stimuli are often overrepresented. One class of such stimuli is species-specific vocalizations. Rats vocalize in the ultrasonic range >30 kHz, but cortical representation of this frequency range has not been systematically examined. We recorded in vivo cortical electrophysiological responses to ultrasonic pure-tone pips, natural ultrasonic vocalizations, and pitch-shifted vocalizations to assess how rats represent this ethologically relevant frequency range. We find that nearly 40% of the primary auditory cortex (AI) represents an octave-wide band of ultrasonic vocalization frequencies (UVFs; 32-64 kHz) compared with <20% for other octave bands <32 kHz. These UVF neurons respond preferentially and reliably to ultrasonic vocalizations. The UVF overrepresentation matures in the cortex before it develops in the central nucleus of inferior colliculus, suggesting a cortical origin and corticofugal influences. Furthermore, the development of cortical UVF overrepresentation depends on early acoustic experience. These results indicate that natural sensory experience causes large-scale cortical map reorganization and improves representations of species-specific vocalizations.

摘要

皮层感觉代表具有高度的环境适应性,通常会过度代表流行或行为上重要的刺激。这类刺激之一是特定于物种的发声。大鼠在>30 kHz 的超声范围内发声,但皮层对该频率范围的代表尚未得到系统检查。我们记录了体内皮层电生理对超声纯音脉冲、自然超声发声和音高转换发声的反应,以评估大鼠如何代表这种与行为相关的频率范围。我们发现,近 40%的初级听觉皮层 (AI) 代表了一个八度宽的超声发声频率带 (UVF;32-64 kHz),而其他<32 kHz 的八度频带<20%。这些 UVF 神经元对超声发声有优先和可靠的反应。UVF 的过度代表在皮层中发育之前,在中脑下丘中央核中发育,这表明了皮层的起源和皮质投射的影响。此外,皮层 UVF 过度代表的发育取决于早期的听觉经验。这些结果表明,自然感觉体验导致了大规模的皮层图谱重组,并改善了特定于物种的发声的表示。

相似文献

1
Experience-dependent overrepresentation of ultrasonic vocalization frequencies in the rat primary auditory cortex.
J Neurophysiol. 2013 Sep;110(5):1087-96. doi: 10.1152/jn.00230.2013. Epub 2013 Jun 5.
2
Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain.
Neurosci Lett. 2008 Apr 11;435(1):17-23. doi: 10.1016/j.neulet.2008.02.002. Epub 2008 Feb 9.
4
Over-representation of species-specific vocalizations in the awake mouse inferior colliculus.
Neuroscience. 2009 Aug 18;162(2):486-500. doi: 10.1016/j.neuroscience.2009.04.056. Epub 2009 May 3.
5
6
Bidirectional generative adversarial representation learning for natural stimulus synthesis.
J Neurophysiol. 2024 Oct 1;132(4):1156-1169. doi: 10.1152/jn.00421.2023. Epub 2024 Aug 28.
8
Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat.
J Neurophysiol. 1999 Nov;82(5):2528-44. doi: 10.1152/jn.1999.82.5.2528.
9
Experience-Dependent Coding of Time-Dependent Frequency Trajectories by Off Responses in Secondary Auditory Cortex.
J Neurosci. 2020 Jun 3;40(23):4469-4482. doi: 10.1523/JNEUROSCI.2665-19.2020. Epub 2020 Apr 23.

引用本文的文献

1
Developmental encoding of natural sounds in the mouse auditory cortex.
Cereb Cortex. 2024 Nov 5;34(11). doi: 10.1093/cercor/bhae438.
2
The Mouse Inferior Colliculus Responds Preferentially to Non-Ultrasonic Vocalizations.
eNeuro. 2024 Apr 12;11(4). doi: 10.1523/ENEURO.0097-24.2024. Print 2024 Apr.
3
Hearing, touching, and multisensory integration during mate choice.
Front Neural Circuits. 2022 Sep 20;16:943888. doi: 10.3389/fncir.2022.943888. eCollection 2022.
4
Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation.
Brain Sci. 2021 May 9;11(5):605. doi: 10.3390/brainsci11050605.
8
Impaired Processing in the Primary Auditory Cortex of an Animal Model of Autism.
Front Syst Neurosci. 2015 Nov 16;9:158. doi: 10.3389/fnsys.2015.00158. eCollection 2015.
9
Perceptual learning in the developing auditory cortex.
Eur J Neurosci. 2015 Mar;41(5):718-24. doi: 10.1111/ejn.12826.

本文引用的文献

1
Impaired development and competitive refinement of the cortical frequency map in tumor necrosis factor-α-deficient mice.
Cereb Cortex. 2014 Jul;24(7):1956-65. doi: 10.1093/cercor/bht053. Epub 2013 Feb 28.
2
Perceptual and neuronal boundary learned from higher-order stimulus probabilities.
J Neurosci. 2013 Feb 20;33(8):3699-705. doi: 10.1523/JNEUROSCI.3166-12.2013.
4
Reconstructing speech from human auditory cortex.
PLoS Biol. 2012 Jan;10(1):e1001251. doi: 10.1371/journal.pbio.1001251. Epub 2012 Jan 31.
5
Multisensory integration of natural odors and sounds in the auditory cortex.
Neuron. 2011 Oct 20;72(2):357-69. doi: 10.1016/j.neuron.2011.08.019.
6
A critical period for auditory thalamocortical connectivity.
Nat Neurosci. 2011 Jul 31;14(9):1189-94. doi: 10.1038/nn.2882.
8
Persistent effects of early augmented acoustic environment on the auditory brainstem.
Neuroscience. 2011 Jun 16;184:75-87. doi: 10.1016/j.neuroscience.2011.04.001. Epub 2011 Apr 8.
9
Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex.
J Neurosci. 2011 Apr 13;31(15):5625-34. doi: 10.1523/JNEUROSCI.6470-10.2011.
10
Linking topography to tonotopy in the mouse auditory thalamocortical circuit.
J Neurosci. 2011 Feb 23;31(8):2983-95. doi: 10.1523/JNEUROSCI.5333-10.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验