Suppr超能文献

基于全基因组、基于序列的关联遗传学揭示蒺藜苜蓿共生和农艺性状的候选基因和遗传结构。

Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula.

机构信息

Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America.

出版信息

PLoS One. 2013 May 31;8(5):e65688. doi: 10.1371/journal.pone.0065688. Print 2013.

Abstract

Genome-wide association study (GWAS) has revolutionized the search for the genetic basis of complex traits. To date, GWAS have generally relied on relatively sparse sampling of nucleotide diversity, which is likely to bias results by preferentially sampling high-frequency SNPs not in complete linkage disequilibrium (LD) with causative SNPs. To avoid these limitations we conducted GWAS with >6 million SNPs identified by sequencing the genomes of 226 accessions of the model legume Medicago truncatula. We used these data to identify candidate genes and the genetic architecture underlying phenotypic variation in plant height, trichome density, flowering time, and nodulation. The characteristics of candidate SNPs differed among traits, with candidates for flowering time and trichome density in distinct clusters of high linkage disequilibrium (LD) and the minor allele frequencies (MAF) of candidates underlying variation in flowering time and height significantly greater than MAF of candidates underlying variation in other traits. Candidate SNPs tagged several characterized genes including nodulation related genes SERK2, MtnodGRP3, MtMMPL1, NFP, CaML3, MtnodGRP3A and flowering time gene MtFD as well as uncharacterized genes that become candidates for further molecular characterization. By comparing sequence-based candidates to candidates identified by in silico 250K SNP arrays, we provide an empirical example of how reliance on even high-density reduced representation genomic makers can bias GWAS results. Depending on the trait, only 30-70% of the top 20 in silico array candidates were within 1 kb of sequence-based candidates. Moreover, the sequence-based candidates tagged by array candidates were heavily biased towards common variants; these comparisons underscore the need for caution when interpreting results from GWAS conducted with sparsely covered genomes.

摘要

全基因组关联研究(GWAS)彻底改变了寻找复杂性状遗传基础的方式。迄今为止,GWAS 通常依赖于核苷酸多样性的相对稀疏采样,这可能通过优先采样与因果 SNP 不完全连锁不平衡(LD)的高频 SNP 来偏向结果。为了避免这些限制,我们对 226 个模式豆科植物蒺藜苜蓿基因组进行测序,鉴定了超过 600 万个 SNP,并进行了 GWAS。我们利用这些数据鉴定了候选基因和表型变异(株高、毛密度、开花时间和结瘤)的遗传结构。候选 SNP 的特征因性状而异,开花时间和毛密度的候选 SNP 位于高 LD (LD)的不同聚类中,候选 SNP 的次要等位基因频率(MAF)显著大于候选 SNP 的 MAF 其他性状的变异。候选 SNP 标记了几个特征基因,包括结瘤相关基因 SERK2、MtnodGRP3、MtMMPL1、NFP、CaML3、MtnodGRP3A 和开花时间基因 MtFD 以及未表征的基因,这些基因成为进一步分子表征的候选基因。通过将基于序列的候选基因与通过计算机模拟的 250K SNP 阵列鉴定的候选基因进行比较,我们提供了一个关于即使依赖高密度降低代表性基因组标记如何偏向 GWAS 结果的经验实例。根据性状的不同,仅 30-70%的前 20 个计算机模拟阵列候选基因位于基于序列的候选基因的 1 kb 内。此外,由阵列候选基因标记的基于序列的候选基因严重偏向常见变体;这些比较强调了在对基因组覆盖稀疏的 GWAS 进行解释时需要谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ffb/3669257/4180082ccac3/pone.0065688.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验