Suppr超能文献

使用基因表达数据选择人类组织特异性基本通量模式。

Selection of human tissue-specific elementary flux modes using gene expression data.

机构信息

Biomedical Engineering Department, CEIT and Tecnun, University of Navarra, San Sebastian, Spain.

出版信息

Bioinformatics. 2013 Aug 15;29(16):2009-16. doi: 10.1093/bioinformatics/btt328. Epub 2013 Jun 6.

Abstract

MOTIVATION

The analysis of high-throughput molecular data in the context of metabolic pathways is essential to uncover their underlying functional structure. Among different metabolic pathway concepts in systems biology, elementary flux modes (EFMs) hold a predominant place, as they naturally capture the complexity and plasticity of cellular metabolism and go beyond predefined metabolic maps. However, their use to interpret high-throughput data has been limited so far, mainly because their computation in genome-scale metabolic networks has been unfeasible. To face this issue, different optimization-based techniques have been recently introduced and their application to human metabolism is promising.

RESULTS

In this article, we exploit and generalize the K-shortest EFM algorithm to determine a subset of EFMs in a human genome-scale metabolic network. This subset of EFMs involves a wide number of reported human metabolic pathways, as well as potential novel routes, and constitutes a valuable database where high-throughput data can be mapped and contextualized from a metabolic perspective. To illustrate this, we took expression data of 10 healthy human tissues from a previous study and predicted their characteristic EFMs based on enrichment analysis. We used a multivariate hypergeometric test and showed that it leads to more biologically meaningful results than standard hypergeometric. Finally, a biological discussion on the characteristic EFMs obtained in liver is conducted, finding a high level of agreement when compared with the literature.

摘要

动机

在代谢途径的背景下分析高通量分子数据对于揭示其潜在的功能结构至关重要。在系统生物学中不同的代谢途径概念中,基本通量模式 (EFMs) 占据主导地位,因为它们自然地捕捉到了细胞代谢的复杂性和可变性,并且超越了预先定义的代谢图谱。然而,它们在解释高通量数据方面的应用迄今为止受到限制,主要是因为在基因组规模的代谢网络中计算它们是不可行的。为了解决这个问题,最近引入了不同的基于优化的技术,并且它们在人类代谢中的应用很有前景。

结果

在本文中,我们利用和推广了 K-最短 EFM 算法来确定人类基因组规模代谢网络中的一组 EFM。该 EFM 子集涉及大量已报道的人类代谢途径,以及潜在的新途径,并且构成了一个有价值的数据库,可以从代谢角度对高通量数据进行映射和上下文分析。为了说明这一点,我们采用了先前研究中 10 个人类健康组织的表达数据,并根据富集分析预测了它们的特征 EFM。我们使用多元超几何检验,结果表明它比标准超几何检验更能产生更有生物学意义的结果。最后,对从肝脏中获得的特征 EFM 进行了生物学讨论,发现与文献相比具有很高的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验