Pandey Vikash
Department of Molecular Biology, Umeå University, Umeå, 90187, Sweden.
Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf077.
Modeling genome-scale metabolic networks (GEMs) helps understand metabolic fluxes in cells at a specific state under defined environmental conditions or perturbations. Elementary flux modes (EFMs) are powerful tools for simplifying complex metabolic networks into smaller, more manageable pathways. However, the enumeration of all EFMs, especially within GEMs, poses significant challenges due to computational complexity. Additionally, traditional EFM approaches often fail to capture essential aspects of metabolism, such as co-factor balancing and by-product generation. The previously developed Minimum Network Enrichment Analysis (MiNEA) method addresses these limitations by enumerating alternative minimal networks for given biomass building blocks and metabolic tasks. MiNEA facilitates a deeper understanding of metabolic task flexibility and context-specific metabolic routes by integrating condition-specific transcriptomics, proteomics, and metabolomics data. This approach offers significant improvements in the analysis of metabolic pathways, providing more comprehensive insights into cellular metabolism.
Here, I present MiNEApy, a Python package reimplementation of MiNEA, which computes minimal networks and performs enrichment analysis. I demonstrate the application of MiNEApy on both a small-scale and a genome-scale model of the bacterium Escherichia coli, showcasing its ability to conduct minimal network enrichment analysis using minimal networks and context-specific data.
MiNEApy can be accessed at: https://github.com/vpandey-om/mineapy.
对基因组规模的代谢网络(GEMs)进行建模有助于理解在特定环境条件或扰动下处于特定状态的细胞中的代谢通量。基本通量模式(EFMs)是将复杂代谢网络简化为更小、更易于管理的途径的有力工具。然而,由于计算复杂性,枚举所有的EFMs,尤其是在GEMs中,带来了重大挑战。此外,传统的EFM方法往往无法捕捉代谢的关键方面,如辅因子平衡和副产物生成。先前开发的最小网络富集分析(MiNEA)方法通过为给定的生物质构建模块和代谢任务枚举替代的最小网络来解决这些限制。MiNEA通过整合特定条件下的转录组学、蛋白质组学和代谢组学数据,促进了对代谢任务灵活性和特定背景代谢途径的更深入理解。这种方法在代谢途径分析方面有显著改进,能提供对细胞代谢更全面的见解。
在此,我展示了MiNEApy,这是MiNEA的一个用Python语言重新实现的包,它可以计算最小网络并进行富集分析。我展示了MiNEApy在大肠杆菌的小规模和基因组规模模型上的应用,展示了它使用最小网络和特定背景数据进行最小网络富集分析的能力。
可以通过以下链接访问MiNEApy:https://github.com/vpandey-om/mineapy 。