Laboratory of Computational Systems Biotechnology, EPFL, Lausanne, Switzerland.
PLoS Comput Biol. 2019 Apr 19;15(4):e1006760. doi: 10.1371/journal.pcbi.1006760. eCollection 2019 Apr.
Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndromes spanning a wide spectrum of diseases, from simple steatosis to the more complex nonalcoholic steatohepatitis. To identify the deregulation that occurs in metabolic processes at the molecular level that give rise to these various NAFLD phenotypes, algorithms such as pathway enrichment analysis (PEA) can be used. These analyses require the use of predefined pathway maps, which are composed of reactions describing metabolic processes/subsystems. Unfortunately, the annotation of the metabolic subsystems can differ depending on the pathway database used, making these approaches subject to biases associated with different pathway annotations, and these methods cannot capture the balancing of cofactors and byproducts through the complex nature and interactions of genome-scale metabolic networks (GEMs). Here, we introduce a framework entitled Minimum Network Enrichment Analysis (MiNEA) that is applied to GEMs to generate all possible alternative minimal networks (MiNs), which are possible and feasible networks composed of all the reactions pertaining to various metabolic subsystems that can synthesize a target metabolite. We applied MiNEA to investigate deregulated MiNs and to identify key regulators in different NAFLD phenotypes, such as a fatty liver and liver inflammation, in both humans and mice by integrating condition-specific transcriptomics data from liver samples. We identified key deregulations in the synthesis of cholesteryl esters, cholesterol, and hexadecanoate in both humans and mice, and we found that key regulators of the hydrogen peroxide synthesis network were regulated differently in humans and mice. We further identified which MiNs demonstrate the general and specific characteristics of the different NAFLD phenotypes. MiNEA is applicable to any GEM and to any desired target metabolite, making MiNEA flexible enough to study condition-specific metabolism for any given disease or organism.
非酒精性脂肪性肝病 (NAFLD) 与代谢综合征有关,涵盖了从单纯脂肪变性到更复杂的非酒精性脂肪性肝炎等广泛的疾病谱。为了确定在分子水平上导致这些不同的 NAFLD 表型的代谢过程中发生的失调,可以使用通路富集分析 (PEA) 等算法。这些分析需要使用预定义的通路图谱,这些图谱由描述代谢过程/子系统的反应组成。不幸的是,代谢子系统的注释可能因使用的通路数据库而异,这使得这些方法容易受到不同通路注释相关的偏差的影响,并且这些方法无法通过基因组规模代谢网络 (GEM) 的复杂性质和相互作用来捕捉辅助因子和副产物的平衡。在这里,我们引入了一个名为最小网络富集分析 (MiNEA) 的框架,该框架应用于 GEM 以生成所有可能的替代最小网络 (MiN),这些 MiN 是由与各种代谢子系统相关的所有反应组成的可能且可行的网络,这些反应可以合成目标代谢物。我们应用 MiNEA 来研究失调的 MiN,并通过整合来自肝脏样本的特定条件转录组学数据,在人类和小鼠中鉴定不同 NAFLD 表型(如脂肪肝和肝炎症)中的关键调节剂。我们确定了人类和小鼠中胆甾醇酯、胆固醇和十六烷酸合成的关键失调,并且发现过氧化氢合成网络的关键调节剂在人类和小鼠中的调节方式不同。我们进一步确定了哪些 MiN 表现出不同 NAFLD 表型的一般和特定特征。MiNEA 适用于任何 GEM 和任何所需的目标代谢物,使得 MiNEA 足够灵活,可以针对任何给定的疾病或生物体研究特定条件下的代谢。