Suppr超能文献

踝关节形态相对于比目鱼肌缩短使跟骨运动放大。

Ankle morphology amplifies calcaneus movement relative to triceps surae muscle shortening.

机构信息

Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California, San Diego, California, USA.

出版信息

J Appl Physiol (1985). 2013 Aug 15;115(4):468-73. doi: 10.1152/japplphysiol.00395.2013. Epub 2013 Jun 6.

Abstract

The present study investigated the mechanical role of the dorsoventral curvature of the Achilles tendon in the conversion of the shortening of the plantarflexor muscles into ankle joint rotation. Dynamic, sagittal-plane magnetic resonance spin-tagged images of the ankle joint were acquired in six healthy subjects during both passive and active plantarflexion movements driven by a magnetic resonance compatible servomotor-controlled foot-pedal device. Several points on these images were tracked to determine the 1) path and deformation of the Achilles tendon, 2) ankle's center of rotation, and 3) tendon moment arms. The degree of mechanical amplification of joint movement was calculated as the ratio of the displacements of the calcaneus and myotendinous junction. In plantarflexion, significant deflection of the Achilles tendon was evident in both the passive (165.7 ± 7.4°; 180° representing a straight tendon) and active trials (166.9 ± 8.8°). This bend in the dorsoventral direction acts to move the Achilles tendon closer to the ankle's center of rotation, resulting in an ∼5% reduction of moment arm length. Over the entire range of movement, the overall displacement of the calcaneus exceeded the displacement of the myotendinous junction by ∼37%, with the mechanical gains being smaller in dorsi- and larger in plantarflexed joint positions. This is the first study to assess noninvasively and in vivo using MRI the curvature of the Achilles tendon during both passive and active plantarflexion movements. The dorsoventral tendon curvature amplifies the shortening of the plantarflexor muscles, resulting in a greater displacement of the tendon's insertion into the calcaneus compared with its origin.

摘要

本研究探讨了跟腱的背-腹曲率在跖屈肌缩短转化为踝关节旋转过程中的力学作用。本研究在 6 名健康受试者进行被动和主动跖屈运动时,使用与磁共振兼容的伺服电机控制的脚踏装置驱动,获取了踝关节矢状面的动态磁共振自旋标记图像。通过跟踪这些图像上的多个点,确定了 1)跟腱的路径和变形,2)踝关节的旋转中心,和 3)肌腱力臂。关节运动的机械放大程度计算为跟骨和肌腱-肌肉结合部的位移比。在跖屈运动中,在被动(165.7±7.4°;180°表示跟腱为直线)和主动试验(166.9±8.8°)中均可见跟腱明显的背-腹向偏折。这种背-腹向的弯曲作用使跟腱更接近踝关节的旋转中心,导致力臂长度缩短约 5%。在整个运动范围内,跟骨的整体位移超过肌腱-肌肉结合部的位移约 37%,在背屈和跖屈关节位置时,机械增益较小和较大。这是首次使用 MRI 非侵入性地和在体评估跟腱在被动和主动跖屈运动过程中的曲率。跟腱的背-腹曲率放大了跖屈肌的缩短,使肌腱插入跟骨的位移相对于其起点更大。

相似文献

1
Ankle morphology amplifies calcaneus movement relative to triceps surae muscle shortening.
J Appl Physiol (1985). 2013 Aug 15;115(4):468-73. doi: 10.1152/japplphysiol.00395.2013. Epub 2013 Jun 6.
2
Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: in vivo observations in man.
J Physiol. 1998 Aug 1;510 ( Pt 3)(Pt 3):977-85. doi: 10.1111/j.1469-7793.1998.977bj.x.
3
Estimates of Achilles tendon moment arm differ when axis of ankle rotation is derived from ankle motion.
J Biomech. 2019 Jun 11;90:71-77. doi: 10.1016/j.jbiomech.2019.04.032. Epub 2019 Apr 29.
4
In vivo moment arm calculations at the ankle using magnetic resonance imaging (MRI).
J Biomech. 1990;23(5):495-501. doi: 10.1016/0021-9290(90)90305-m.
5
Correlations between Achilles tendon moment arm and plantarflexor muscle architecture variables.
PLoS One. 2024 Aug 29;19(8):e0309406. doi: 10.1371/journal.pone.0309406. eCollection 2024.
7
A comparison of the triceps surae and residual muscle moments at the ankle during cycling.
J Biomech. 1991;24(5):287-97. doi: 10.1016/0021-9290(91)90347-p.
8
Built for speed: musculoskeletal structure and sprinting ability.
J Exp Biol. 2009 Nov;212(Pt 22):3700-7. doi: 10.1242/jeb.031096.
9
In vivo determination of the Achilles tendon moment arm in three-dimensions.
J Biomech. 2012 Jan 10;45(2):409-13. doi: 10.1016/j.jbiomech.2011.10.018. Epub 2011 Nov 4.
10
Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length.
J Appl Physiol (1985). 2009 Apr;106(4):1249-56. doi: 10.1152/japplphysiol.91476.2008. Epub 2009 Jan 29.

引用本文的文献

3
Age-related changes to triceps surae muscle-subtendon interaction dynamics during walking.
Sci Rep. 2021 Oct 28;11(1):21264. doi: 10.1038/s41598-021-00451-y.
4
Effective Mechanical Advantage About the Ankle Joint and the Effect of Achilles Tendon Curvature During Toe-Walking.
Front Physiol. 2020 May 19;11:407. doi: 10.3389/fphys.2020.00407. eCollection 2020.
5
Ankle Rotation and Muscle Loading Effects on the Calcaneal Tendon Moment Arm: An In Vivo Imaging and Modeling Study.
Ann Biomed Eng. 2019 Feb;47(2):590-600. doi: 10.1007/s10439-018-02162-4. Epub 2018 Nov 1.
6
Do triceps surae muscle dynamics govern non-uniform Achilles tendon deformations?
PeerJ. 2018 Jul 12;6:e5182. doi: 10.7717/peerj.5182. eCollection 2018.
7
Ultrasound estimates of Achilles tendon exhibit unexpected shortening during ankle plantarflexion.
J Biomech. 2018 Apr 27;72:200-206. doi: 10.1016/j.jbiomech.2018.03.013. Epub 2018 Mar 15.
10
It's positive to be negative: Achilles tendon work loops during human locomotion.
PLoS One. 2017 Jul 3;12(7):e0179976. doi: 10.1371/journal.pone.0179976. eCollection 2017.

本文引用的文献

1
Do kinaesthetic tapes affect plantarflexor muscle performance?
J Sports Sci. 2012;30(14):1513-9. doi: 10.1080/02640414.2012.712713. Epub 2012 Aug 6.
3
Skeletal muscle design to meet functional demands.
Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1466-76. doi: 10.1098/rstb.2010.0316.
4
Gastrocnemius tendon length and strain are different when assessed using straight or curved tendon model.
Eur J Appl Physiol. 2011 Dec;111(12):3151-4. doi: 10.1007/s00421-011-1929-9. Epub 2011 Apr 1.
5
The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions.
J Appl Physiol (1985). 2010 Aug;109(2):396-404. doi: 10.1152/japplphysiol.01272.2009. Epub 2010 May 27.
6
In vivo intramuscular fascicle-aponeuroses dynamics of the human medial gastrocnemius during plantarflexion and dorsiflexion of the foot.
J Appl Physiol (1985). 2009 Oct;107(4):1276-84. doi: 10.1152/japplphysiol.91598.2008. Epub 2009 Jul 16.
7
Effective limb length and the scaling of locomotor cost in terrestrial animals.
J Exp Biol. 2007 May;210(Pt 10):1752-61. doi: 10.1242/jeb.002246.
8
Effect of joint rotation correction when measuring elongation of the gastrocnemius medialis tendon and aponeurosis.
J Electromyogr Kinesiol. 2008 Jun;18(3):503-8. doi: 10.1016/j.jelekin.2006.12.002. Epub 2007 Jan 24.
10
Muscle fiber angle, segment bulging and architectural gear ratio in segmented musculature.
J Exp Biol. 2005 Sep;208(Pt 17):3249-61. doi: 10.1242/jeb.01770.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验