Department of Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA.
Electrophoresis. 2013 Aug;34(15):2137-44. doi: 10.1002/elps.201300174.
This numerical study provides an error analysis of an idealized nanopore sequencing method in which ionic current measurements are used to sequence intact single-stranded DNA in the pore, while an enzyme controls DNA motion. Examples of systematic channel errors when more than one nucleotide affects the current amplitude are detailed, which if present will persist regardless of coverage. Absent such errors, random errors associated with tracking through homopolymer regions are shown to necessitate reading known sequences (Escherichia coli K-12) at least 140 times to achieve 99.99% accuracy (Q40). By exploiting the ability to reread each strand at each pore in an array, arbitrary positioning on an error rate versus throughput tradeoff curve is possible if systematic errors are absent, with throughput governed by the number of pores in the array and the enzyme turnover rate.
这项数值研究对一种理想化的纳米孔测序方法进行了误差分析,该方法利用离子电流测量来对孔内完整的单链 DNA 进行测序,同时酶控制 DNA 的运动。详细说明了当一个以上的核苷酸影响电流幅度时会出现系统通道误差,如果存在这些误差,无论覆盖率如何,它们都会持续存在。如果不存在这些误差,则表明与跟踪同聚物区域相关的随机误差需要读取至少 140 次已知序列(大肠杆菌 K-12)才能达到 99.99%的准确率(Q40)。通过利用在阵列中的每个孔重新读取每条链的能力,如果不存在系统误差,则可以在误差率与吞吐量的折衷曲线上任意定位,吞吐量由阵列中的孔数和酶周转率决定。