Suppr超能文献

随机引物、链转换、基于 MinION 的测序技术用于检测和表征培养的 RNA 病毒。

Randomly primed, strand-switching, MinION-based sequencing for the detection and characterization of cultured RNA viruses.

机构信息

Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA.

Department of Biomedical Sciences & Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA.

出版信息

J Vet Diagn Invest. 2021 Mar;33(2):202-215. doi: 10.1177/1040638720981019. Epub 2020 Dec 24.

Abstract

RNA viruses rapidly mutate, which can result in increased virulence, increased escape from vaccine protection, and false-negative detection results. Targeted detection methods have a limited ability to detect unknown viruses and often provide insufficient data to detect coinfections or identify antigenic variants. Random, deep sequencing is a method that can more fully detect and characterize RNA viruses and is often coupled with molecular techniques or culture methods for viral enrichment. We tested viral culture coupled with third-generation sequencing for the ability to detect and characterize RNA viruses. Cultures of bovine viral diarrhea virus, canine distemper virus (CDV), epizootic hemorrhagic disease virus, infectious bronchitis virus, 2 influenza A viruses, and porcine respiratory and reproductive syndrome virus were sequenced on the MinION platform using a random, reverse primer in a strand-switching reaction, coupled with PCR-based barcoding. Reads were taxonomically classified and used for reference-based sequence building using a stock personal computer. This method accurately detected and identified complete coding sequence genomes with a minimum of 20× coverage depth for all 7 viruses, including a sample containing 2 viruses. Each lineage-typing region had at least 26× coverage depth for all viruses. Furthermore, analyzing the CDV sample through a pipeline devoid of CDV reference sequences modeled the ability of this protocol to detect unknown viruses. Our results show the ability of this technique to detect and characterize dsRNA, negative- and positive-sense ssRNA, and nonsegmented and segmented RNA viruses.

摘要

RNA 病毒迅速变异,这可能导致毒力增强、逃避疫苗保护的能力增强,以及假阴性检测结果。靶向检测方法检测未知病毒的能力有限,而且通常提供的检测数据不足以检测合并感染或鉴定抗原变体。随机、深度测序是一种更全面地检测和鉴定 RNA 病毒的方法,通常与分子技术或病毒富集培养方法相结合。我们测试了病毒培养与第三代测序相结合的方法,以检测和鉴定 RNA 病毒。使用随机、反向引物在链转换反应中,结合基于 PCR 的条形码,在 MinION 平台上对牛病毒性腹泻病毒、犬瘟热病毒 (CDV)、传染性出血性疾病病毒、传染性支气管炎病毒、2 种流感 A 病毒和猪呼吸与繁殖综合征病毒进行测序。使用库存个人计算机对读段进行分类,并用于基于参考的序列构建。该方法准确地检测和鉴定了所有 7 种病毒的完整编码序列基因组,最小覆盖深度为 20×,包括包含 2 种病毒的样本。对于所有病毒,每个谱系分型区域的覆盖深度至少为 26×。此外,通过不包含 CDV 参考序列的管道分析 CDV 样本,模拟了该方案检测未知病毒的能力。我们的结果表明,该技术具有检测和鉴定 dsRNA、负链和正链 ssRNA 以及非节段和节段 RNA 病毒的能力。

相似文献

1
Randomly primed, strand-switching, MinION-based sequencing for the detection and characterization of cultured RNA viruses.
J Vet Diagn Invest. 2021 Mar;33(2):202-215. doi: 10.1177/1040638720981019. Epub 2020 Dec 24.
2
Nanopore-based detection and characterization of yam viruses.
Sci Rep. 2018 Dec 14;8(1):17879. doi: 10.1038/s41598-018-36042-7.
3
Real-time, MinION-based, amplicon sequencing for lineage typing of infectious bronchitis virus from upper respiratory samples.
J Vet Diagn Invest. 2021 Mar;33(2):179-190. doi: 10.1177/1040638720910107. Epub 2020 Mar 5.
4
Method comparison of targeted influenza A virus typing and whole-genome sequencing from respiratory specimens of companion animals.
J Vet Diagn Invest. 2021 Mar;33(2):191-201. doi: 10.1177/1040638720933875. Epub 2020 Nov 24.
5
Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses.
BMC Infect Dis. 2020 Sep 3;20(1):648. doi: 10.1186/s12879-020-05367-y.
7
MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
Gigascience. 2017 Mar 1;6(3):1-10. doi: 10.1093/gigascience/gix007.
9
Culture-Independent Workflow for Nanopore MinION-Based Sequencing of Influenza A Virus.
Microbiol Spectr. 2023 Jun 15;11(3):e0494622. doi: 10.1128/spectrum.04946-22. Epub 2023 May 22.

引用本文的文献

4
Piscichuvirus-Associated Severe Meningoencephalomyelitis in Aquatic Turtles, United States, 2009-2021.
Emerg Infect Dis. 2023 Feb;30(2):280-288. doi: 10.3201/eid3002.231142.
10
Agnostic Sequencing for Detection of Viral Pathogens.
Clin Microbiol Rev. 2023 Mar 23;36(1):e0011922. doi: 10.1128/cmr.00119-22. Epub 2023 Feb 27.

本文引用的文献

1
Real-time, MinION-based, amplicon sequencing for lineage typing of infectious bronchitis virus from upper respiratory samples.
J Vet Diagn Invest. 2021 Mar;33(2):179-190. doi: 10.1177/1040638720910107. Epub 2020 Mar 5.
2
Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification.
Bioinformatics. 2020 Feb 15;36(4):1303-1304. doi: 10.1093/bioinformatics/btz715.
3
Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV).
Sci Rep. 2019 May 8;9(1):7081. doi: 10.1038/s41598-019-43524-9.
4
Towards high quality real-time whole genome sequencing during outbreaks using Usutu virus as example.
Infect Genet Evol. 2019 Sep;73:49-54. doi: 10.1016/j.meegid.2019.04.015. Epub 2019 Apr 20.
7
Complete Genome Sequence of Mobuck Virus Isolated from a Florida White-Tailed Deer (Odocoileus virginianus).
Microbiol Resour Announc. 2019 Jan 17;8(3). doi: 10.1128/MRA.01324-18. eCollection 2019 Jan.
9
Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus.
BMC Genomics. 2018 Dec 4;19(1):873. doi: 10.1186/s12864-018-5267-8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验