Suppr超能文献

实验性癌症进化的第一步。

First steps in experimental cancer evolution.

机构信息

University of Reading, Whiteknights Reading, Berkshire.

出版信息

Evol Appl. 2013 Apr;6(3):535-48. doi: 10.1111/eva.12041. Epub 2013 Jan 3.

Abstract

Evolutionary processes play a central role in the development, progression and response to treatment of cancers. The current challenge facing researchers is to harness evolutionary theory to further our understanding of the clinical progression of cancers. Central to this endeavour will be the development of experimental systems and approaches by which theories of cancer evolution can be effectively tested. We argue here that the experimental evolution approach - whereby evolution is observed in real time and which has typically employed microorganisms - can be usefully applied to cancer. This approach allows us to disentangle the ecological causes of natural selection, identify the genetic basis of evolutionary changes and determine their repeatability. Cell cultures used in cancer research share many of the desirable traits that make microorganisms ideal for studying evolution. As such, experimental cancer evolution is feasible and likely to give great insight into the selective pressures driving the evolution of clinically destructive cancer traits. We highlight three areas of evolutionary theory with importance to cancer biology that are amenable to experimental evolution: drug resistance, social evolution and resource competition. Understanding the diversity, persistence and evolution of cancers is vital for treatment and drug development, and an experimental evolution approach could provide strategic directions and focus for future research.

摘要

进化过程在癌症的发展、进展和治疗反应中起着核心作用。研究人员目前面临的挑战是利用进化理论来进一步了解癌症的临床进展。这项努力的核心将是开发实验系统和方法,以便有效地测试癌症进化理论。我们在这里认为,实验进化方法——实时观察进化,通常使用微生物——可以有效地应用于癌症。这种方法使我们能够分解自然选择的生态原因,确定进化变化的遗传基础,并确定其可重复性。癌症研究中使用的细胞培养物具有许多理想的特征,使微生物成为研究进化的理想选择。因此,实验性癌症进化是可行的,并且很可能深入了解驱动临床上破坏性癌症特征进化的选择压力。我们强调了对癌症生物学具有重要意义的三个进化理论领域,这些领域适合实验进化:耐药性、社会进化和资源竞争。了解癌症的多样性、持久性和进化对于治疗和药物开发至关重要,实验进化方法可以为未来的研究提供战略方向和重点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50fc/3673480/76403419e7ad/eva0006-0535-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验