Deutsches Forschungszentrum für Gesundheit und Umwelt (HMGU), Helmholtz-Zentrum München , Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
Acc Chem Res. 2013 Sep 17;46(9):2089-97. doi: 10.1021/ar400063y. Epub 2013 Jun 7.
When applied to biomolecules, solid-state NMR suffers from low sensitivity and resolution. The major obstacle to applying proton detection in the solid state is the proton dipolar network, and deuteration can help avoid this problem. In the past, researchers had primarily focused on the investigation of exchangeable protons in these systems. In this Account, we review NMR spectroscopic strategies that allow researchers to observe aliphatic non-exchangeable proton resonances in proteins with high sensitivity and resolution. Our labeling scheme is based on u-[(2)H,(13)C]-glucose and 5-25% H2O (95-75% D2O) in the M9 bacterial growth medium, known as RAP (reduced adjoining protonation). We highlight spectroscopic approaches for obtaining resonance assignments, a prerequisite for any study of structure and dynamics of a protein by NMR spectroscopy. Because of the dilution of the proton spin system in the solid state, solution-state NMR (1)HCC(1)H type strategies cannot easily be transferred to these experiments. Instead, we needed to pursue ((1)H)CC(1)H, CC(1)H, (1)HCC or ((2)H)CC(1)H type experiments. In protonated samples, we obtained distance restraints for structure calculations from samples grown in bacteria in media containing [1,3]-(13)C-glycerol, [2]-(13)C-glycerol, or selectively enriched glucose to dilute the (13)C spin system. In RAP-labeled samples, we obtained a similar dilution effect by randomly introducing protons into an otherwise deuterated matrix. This isotopic labeling scheme allows us to measure the long-range contacts among aliphatic protons, which can then serve as restraints for the three-dimensional structure calculation of a protein. Due to the high gyromagnetic ratio of protons, longer range contacts are more easily accessible for these nuclei than for carbon nuclei in homologous experiments. Finally, the RAP labeling scheme allows access to dynamic parameters, such as longitudinal relaxation times T1, and order parameters S(2) for backbone and side chain carbon resonances. We expect that these measurements will open up new opportunities to obtain a more detailed description of protein backbone and side chain dynamics.
当应用于生物分子时,固态 NMR 存在灵敏度和分辨率低的问题。在固态中应用质子检测的主要障碍是质子偶极网络,氘化可以帮助避免这个问题。过去,研究人员主要集中在这些系统中可交换质子的研究上。在本综述中,我们回顾了 NMR 光谱学策略,这些策略允许研究人员以高灵敏度和分辨率观察蛋白质中脂肪族非可交换质子的共振。我们的标记方案基于 u-[(2)H,(13)C]-葡萄糖和 M9 细菌生长培养基中的 5-25% H2O(95-75% D2O),称为 RAP(减少相邻质子化)。我们强调了获得共振分配的光谱方法,这是通过 NMR 光谱研究蛋白质结构和动力学的前提。由于质子自旋系统在固态中的稀释,溶液态 NMR(1)HCC(1)H 类型策略不能轻易地应用于这些实验。相反,我们需要进行 ((1)H)CC(1)H、CC(1)H、(1)HCC 或 ((2)H)CC(1)H 类型的实验。在质子化样品中,我们从在含有 [1,3]-(13)C-甘油、[2]-(13)C-甘油或选择性富集葡萄糖的培养基中生长的细菌样品中获得结构计算的距离约束,以稀释 (13)C 自旋系统。在 RAP 标记的样品中,我们通过在其他氘化基质中随机引入质子来获得类似的稀释效果。这种同位素标记方案使我们能够测量脂肪质子之间的长程接触,然后这些接触可作为蛋白质三维结构计算的约束条件。由于质子的磁旋比高,对于这些核,与同源实验中的碳核相比,更容易获得长程接触。最后,RAP 标记方案允许获得动态参数,如纵向弛豫时间 T1 和主链和侧链碳共振的有序参数 S(2)。我们期望这些测量将为获得更详细的蛋白质主链和侧链动力学描述开辟新的机会。