Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, USA.
J Am Chem Soc. 2013 Jul 3;135(26):9691-9. doi: 10.1021/ja4009216. Epub 2013 Jun 18.
Nucleic acid probes are used for diverse applications in vitro, in situ, and in vivo. In any setting, their power is limited by imperfect selectivity (binding of undesired targets) and incomplete affinity (binding is reversible, and not all desired targets bound). These difficulties are fundamental, stemming from reliance on base pairing to provide both selectivity and affinity. Shielded covalent (SC) probes eliminate the longstanding trade-off between selectivity and durable target capture, achieving selectivity via programmable base pairing and molecular conformation change, and durable target capture via activatable covalent cross-linking. In pure and mixed samples, SC probes covalently capture complementary DNA or RNA oligo targets and reject two-nucleotide mismatched targets with near-quantitative yields at room temperature, achieving discrimination ratios of 2-3 orders of magnitude. Semiquantitative studies with full-length mRNA targets demonstrate selective covalent capture comparable to that for RNA oligo targets. Single-nucleotide DNA or RNA mismatches, including nearly isoenergetic RNA wobble pairs, can be efficiently rejected with discrimination ratios of 1-2 orders of magnitude. Covalent capture yields appear consistent with the thermodynamics of probe/target hybridization, facilitating rational probe design. If desired, cross-links can be reversed to release the target after capture. In contrast to existing probe chemistries, SC probes achieve the high sequence selectivity of a structured probe, yet durably retain their targets even under denaturing conditions. This previously incompatible combination of properties suggests diverse applications based on selective and stable binding of nucleic acid targets under conditions where base-pairing is disrupted (e.g., by stringent washes in vitro or in situ, or by enzymes in vivo).
核酸探针在体外、原位和体内的多种应用中都有使用。在任何情况下,它们的功能都受到不理想的选择性(与非目标物结合)和不完全亲和力(结合是可逆的,并非所有目标物都结合)的限制。这些困难是根本性的,源于对碱基配对的依赖,这种依赖既提供了选择性,又提供了亲和力。屏蔽共价(SC)探针消除了选择性和持久的目标捕获之间长期存在的权衡,通过可编程碱基配对和分子构象变化来实现选择性,通过可激活的共价交联来实现持久的目标捕获。在纯样品和混合样品中,SC 探针在室温下以近乎定量的产率共价捕获互补的 DNA 或 RNA 寡核苷酸靶标,并排斥两个核苷酸错配的靶标,实现了 2-3 个数量级的区分率。用全长 mRNA 靶标进行的半定量研究表明,选择性共价捕获与 RNA 寡核苷酸靶标相当。单核苷酸 DNA 或 RNA 错配,包括几乎等能的 RNA 摆动对,也可以通过 1-2 个数量级的区分率有效地被排斥。共价捕获产率似乎与探针/靶标杂交的热力学一致,有利于合理的探针设计。如果需要,交联可以在捕获后逆转以释放目标物。与现有的探针化学不同,SC 探针实现了结构探针的高序列选择性,然而即使在变性条件下,它们也能持久地保留其目标物。这种以前不兼容的性质组合表明,在碱基配对被破坏的条件下(例如,在体外或原位通过严格的洗涤,或在体内通过酶),可以基于核酸靶标的选择性和稳定结合来实现各种应用。