Centre for Blood Research, University of British Columbia, Vancouver, Canada.
Biomacromolecules. 2013 Aug 12;14(8):2611-21. doi: 10.1021/bm400466e. Epub 2013 Jul 5.
Multivalent macromolecular associations are widely observed in biological systems and are increasingly being utilized in bioengineering, nanomedicine, and biomaterial applications. Control over such associations usually demands an ability to reverse the multivalent binding. While in principle this can be done with binding site competitive inhibitors, dissociation is difficult in practice due to limited site accessibility when the macromolecule is bound. We demonstrate here efficient binding reversal of multivalent linear copolymers that adhere to any mammalian cell via the universal mechanism based on choline phosphate (CP) groups binding to phosphatidyl choline (PC)-containing biomembranes. Using a smart linear polymer exhibiting a lower critical solution temperature (LCST), we take advantage of the thermal contraction of the polymer above the LCST, which reduces accessibility of the CP groups to cell membrane PC lipids. The polymer construct can then desorb from the cell surface, reversing all effects of multivalent polymer adhesion on the cell.
多价大分子缔合在生物系统中广泛存在,并且越来越多地被应用于生物工程、纳米医学和生物材料领域。控制这种缔合通常需要能够逆转多价结合。虽然从理论上讲,可以使用结合位点竞争性抑制剂来实现这一点,但由于大分子结合时结合位点的可及性有限,在实践中解离是困难的。我们在这里证明了通过基于胆碱磷酸 (CP) 基团与含有磷脂酰胆碱 (PC) 的生物膜结合的通用机制,有效逆转多价线性共聚物与任何哺乳动物细胞的结合。我们使用一种表现出较低临界溶液温度 (LCST) 的智能线性聚合物,利用聚合物在 LCST 以上的热收缩,降低 CP 基团与细胞膜 PC 脂质的可及性。然后,聚合物结构可以从细胞表面解吸,从而逆转多价聚合物粘附对细胞的所有影响。