Suppr超能文献

一种跨膜肽在不显著扰乱双层结构的情况下穿透双层。

A membrane-translocating peptide penetrates into bilayers without significant bilayer perturbations.

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Biophys J. 2013 Jun 4;104(11):2419-28. doi: 10.1016/j.bpj.2013.04.043.

Abstract

Using a high throughput screen, we have identified a family of 12-residue long peptides that spontaneously translocate across membranes. These peptides function by a poorly understood mechanism that is very different from that of the well-known, highly cationic cell penetrating peptides such as the tat peptide from HIV. The newly discovered translocating peptides can carry polar cargoes across synthetic bilayers and across cellular membranes quickly and spontaneously without disrupting the membrane. Here we report on the biophysical characterization of a representative translocating peptide from the selected family, TP2, as well as a negative control peptide, ONEG, from the same library. We measured the binding of the two peptides to lipid bilayers, their secondary structure propensities, their dispositions in bilayers by neutron diffraction, and the response of the bilayer to the peptides. Compared to the negative control, TP2 has a greater propensity for membrane partitioning, although it still binds only weakly, and a higher propensity for secondary structure. Perhaps most revealing, TP2 has the ability to penetrate deep into the bilayer without causing significant bilayer perturbations, a property that may help explain its ability to translocate without bilayer permeabilization.

摘要

我们使用高通量筛选技术,鉴定了一类由 12 个氨基酸组成的短肽,它们能够自发地跨膜转运。这些短肽的作用机制尚不清楚,与人们熟知的、带正电荷的高效细胞穿透肽(如 HIV 病毒的 tat 肽)完全不同。新发现的跨膜转运肽可以在不破坏膜的情况下,快速、自发地将极性货物转运穿过人工合成双层膜和细胞膜。在此,我们报告了从选定的短肽家族中选出的代表性跨膜转运肽 TP2,以及来自同一文库的阴性对照肽 ONEG 的生物物理特性。我们测量了两种肽与脂质双层的结合、二级结构倾向、在双层中的位置(通过中子衍射)以及双层对肽的响应。与阴性对照相比,TP2 具有更大的膜分配倾向,尽管它仍然只是弱结合,并且具有更高的二级结构倾向。也许最能说明问题的是,TP2 能够穿透双层而不引起明显的双层扰动,这一特性可能有助于解释它在不破坏双层通透性的情况下进行跨膜转运的能力。

相似文献

1
A membrane-translocating peptide penetrates into bilayers without significant bilayer perturbations.
Biophys J. 2013 Jun 4;104(11):2419-28. doi: 10.1016/j.bpj.2013.04.043.
2
Spontaneous membrane-translocating peptides by orthogonal high-throughput screening.
J Am Chem Soc. 2011 Jun 15;133(23):8995-9004. doi: 10.1021/ja2017416. Epub 2011 May 19.
3
Spontaneous Membrane Translocating Peptides: The Role of Leucine-Arginine Consensus Motifs.
Biophys J. 2017 Aug 22;113(4):835-846. doi: 10.1016/j.bpj.2017.06.070.
5
How Membrane-Active Peptides Get into Lipid Membranes.
Acc Chem Res. 2016 Jun 21;49(6):1130-8. doi: 10.1021/acs.accounts.6b00074. Epub 2016 May 17.
6
Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers.
J Membr Biol. 2015 Jun;248(3):505-15. doi: 10.1007/s00232-014-9702-8. Epub 2014 Jul 10.
7
Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction.
Biochim Biophys Acta. 2013 Aug;1828(8):1982-8. doi: 10.1016/j.bbamem.2013.04.022. Epub 2013 May 1.
8
Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
Acc Chem Res. 2017 Dec 19;50(12):2968-2975. doi: 10.1021/acs.accounts.7b00455. Epub 2017 Nov 27.
9
Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study.
Langmuir. 2012 Apr 10;28(14):6088-96. doi: 10.1021/la300274n. Epub 2012 Mar 28.

引用本文的文献

1
Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics.
Front Cell Infect Microbiol. 2025 Apr 28;15:1528583. doi: 10.3389/fcimb.2025.1528583. eCollection 2025.
2
Cytosolic Delivery of Bioactive Cyclic Peptide Cargo by Spontaneous Membrane Translocating Peptides.
ACS Omega. 2024 Feb 5;9(7):8179-8187. doi: 10.1021/acsomega.3c08701. eCollection 2024 Feb 20.
3
Rational Discovery of Antimicrobial Peptides by Means of Artificial Intelligence.
Membranes (Basel). 2022 Jul 14;12(7):708. doi: 10.3390/membranes12070708.
4
5
Translocating Peptides of Biomedical Interest Obtained from the Spike (S) Glycoprotein of the SARS-CoV-2.
Membranes (Basel). 2022 Jun 10;12(6):600. doi: 10.3390/membranes12060600.
7
Membrane-selective nanoscale pores in liposomes by a synthetically evolved peptide: implications for triggered release.
Nanoscale. 2021 Jul 28;13(28):12185-12197. doi: 10.1039/d1nr03084a. Epub 2021 Jun 29.
9
Mechanistic Landscape of Membrane-Permeabilizing Peptides.
Chem Rev. 2019 May 8;119(9):6040-6085. doi: 10.1021/acs.chemrev.8b00520. Epub 2019 Jan 9.
10
Membrane Active Peptides and Their Biophysical Characterization.
Biomolecules. 2018 Aug 22;8(3):77. doi: 10.3390/biom8030077.

本文引用的文献

1
The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization.
Biochim Biophys Acta. 2013 May;1828(5):1357-64. doi: 10.1016/j.bbamem.2013.01.021. Epub 2013 Feb 4.
2
A highly charged voltage-sensor helix spontaneously translocates across membranes.
Angew Chem Int Ed Engl. 2012 Jul 16;51(29):7150-3. doi: 10.1002/anie.201202741. Epub 2012 Jun 13.
3
Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study.
Langmuir. 2012 Apr 10;28(14):6088-96. doi: 10.1021/la300274n. Epub 2012 Mar 28.
4
Liposome technology for cardiovascular disease treatment and diagnosis.
Expert Opin Drug Deliv. 2012 Feb;9(2):249-65. doi: 10.1517/17425247.2012.647908. Epub 2012 Jan 11.
6
Spontaneous membrane-translocating peptides by orthogonal high-throughput screening.
J Am Chem Soc. 2011 Jun 15;133(23):8995-9004. doi: 10.1021/ja2017416. Epub 2011 May 19.
7
Antimicrobial peptides: successes, challenges and unanswered questions.
J Membr Biol. 2011 Jan;239(1-2):27-34. doi: 10.1007/s00232-011-9343-0. Epub 2011 Jan 12.
8
A look at arginine in membranes.
J Membr Biol. 2011 Jan;239(1-2):49-56. doi: 10.1007/s00232-010-9323-9. Epub 2010 Nov 25.
9
Describing the mechanism of antimicrobial peptide action with the interfacial activity model.
ACS Chem Biol. 2010 Oct 15;5(10):905-17. doi: 10.1021/cb1001558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验