Szalontai Balázs, Nagy Gergely, Krumova Sashka, Fodor Elfrieda, Páli Tibor, Taneva Stefka G, Garab Győző, Peters Judith, Dér András
Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary.
Biochim Biophys Acta. 2013 Oct;1830(10):4564-72. doi: 10.1016/j.bbagen.2013.05.036. Epub 2013 Jun 7.
Recently, we have elaborated a thermodynamic theory that could coherently interpret the diverse effects of Hofmeister ions on proteins, based on a single physical parameter, the protein-water interfacial tension (Dér et al., Journal of Physical Chemistry B. 2007, 111, 5344-5350). This theory, implying a "liquid drop model", predicts changes in protein conformational fluctuations upon addition of Hofmeister salts (containing either kosmotropic or chaotropic anions) to the medium.
Here, we report experimental tests of this prediction using a complex approach by applying methods especially suited for the detection of protein fluctuation changes (neutron scattering, micro-calorimetry, and Fourier-transform infrared spectroscopy).
It is demonstrated that Hofmeister salts, via setting the hydrophobic/hydrophilic properties of the protein-water interface, control conformational fluctuations even in the interior of the typical membrane transport protein bacteriorhodopsin, around its temperature-induced, unusual α(II)→α(I) conformational transition between 60 and 90°C. We found that below this transition kosmotropic (COOCH3(-)), while above it chaotropic (ClO4(-)) anions increase structural fluctuations of bR. It was also shown that, in each case, an onset of enhanced equilibrium fluctuations presages this phase transition in the course of the thermotropic response of bR.
These results are in full agreement with the theory, and demonstrate that predictions based on protein-water interfacial tension changes can describe Hofmeister effects and interpret protein dynamics phenomena even in unusual cases.
This approach is expected to provide a useful guide to understand the principles governing the interplay between protein interfacial properties and conformational dynamics, in general.
最近,我们阐述了一种热力学理论,该理论基于单一物理参数——蛋白质 - 水界面张力,能够连贯地解释霍夫迈斯特离子对蛋白质的各种影响(德尔等人,《物理化学杂志B》。2007年,111卷,5344 - 5350页)。该理论暗示了一种“液滴模型”,预测在向介质中添加霍夫迈斯特盐(含有促溶剂或离液剂阴离子)时蛋白质构象波动的变化。
在此,我们报告了使用复杂方法对这一预测进行的实验测试,应用了特别适合检测蛋白质波动变化的方法(中子散射、微量量热法和傅里叶变换红外光谱法)。
结果表明,霍夫迈斯特盐通过设定蛋白质 - 水界面的疏水/亲水性质,即使在典型的膜转运蛋白细菌视紫红质内部,在其60至90°C的温度诱导的异常α(II)→α(I)构象转变附近,也能控制构象波动。我们发现,在该转变温度以下,促溶剂(COOCH3(-)),而在其以上,离液剂(ClO4(-))阴离子会增加细菌视紫红质的结构波动。还表明,在每种情况下,平衡波动增强的起始预示着细菌视紫红质热致响应过程中的这一相变。
这些结果与该理论完全一致,并表明基于蛋白质 - 水界面张力变化的预测能够描述霍夫迈斯特效应,甚至在异常情况下也能解释蛋白质动力学现象。
总体而言,这种方法有望为理解蛋白质界面性质与构象动力学之间相互作用的原理提供有用的指导。