Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, H-6720, Hungary.
J Mol Model. 2017 Sep 27;23(10):298. doi: 10.1007/s00894-017-3471-0.
Protein stability is known to be influenced by the presence of Hofmeister active ions in the solution. In addition to direct ion-protein interactions, this influence manifests through the local alterations of the interfacial water structure induced by the anions and cations present in this region. In our earlier works it was pointed out that the effects of Hofmeister active salts on the stability of Trp-cage miniprotein can be modeled qualitatively using non-polarizable force fields. These simulations reproduced the structure-stabilization and structure-destabilization effects of selected kosmotropic and chaotropic salts, respectively. In the present study we use the same model system to elucidate atomic processes behind the chaotropic destabilization and kosmotropic stabilization of the miniprotein. We focus on changes of the local hydration environment of the miniprotein upon addition of NaClO and NaF salts to the solution. The process is separated into two parts. In the first, 'promotion' phase, the protein structure is fixed, and the local hydration properties induced by the simultaneous presence of protein and ions are investigated, with a special focus on the interaction of Hofmeister active anions with the charged and polar sites. In the second, 'rearrangement' phase we follow changes of the hydration of ions and the protein, accompanying the conformational relaxation of the protein. We identify significant factors of an enthalpic and entropic nature behind the ion-induced free energy changes of the protein-water system, and also propose a possible atomic mechanism consistent with the Collins's rule, for the chaotropic destabilization and kosmotropic stabilization of protein conformation.
蛋白质稳定性已知会受到溶液中霍夫迈斯特活性离子的影响。除了直接的离子-蛋白质相互作用外,这种影响还通过该区域中存在的阴离子和阳离子引起的界面水分子结构的局部改变来表现。在我们早期的工作中指出,使用非极化力场可以定性地模拟霍夫迈斯特活性盐对色氨酸笼小蛋白稳定性的影响。这些模拟分别再现了所选亲溶盐和疏溶盐的结构稳定化和结构不稳定化效应。在本研究中,我们使用相同的模型系统来阐明小蛋白疏溶失稳和亲溶稳定背后的原子过程。我们专注于在向溶液中添加 NaClO 和 NaF 盐时小蛋白局部水合环境的变化。该过程分为两部分。在第一部分“促进”相中,固定蛋白质结构,并研究同时存在蛋白质和离子引起的局部水合性质,特别关注霍夫迈斯特活性阴离子与带电和极性位点的相互作用。在第二部分“重排”相中,我们跟踪离子和蛋白质水合的变化,伴随蛋白质构象的弛豫。我们确定了离子诱导蛋白质-水系统自由能变化背后的焓和熵性质的重要因素,并提出了与柯林斯规则一致的可能的原子机制,用于蛋白质构象的疏溶失稳和亲溶稳定。