Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.
Appl Environ Microbiol. 2013 Aug;79(16):4829-37. doi: 10.1128/AEM.00706-13. Epub 2013 Jun 7.
A novel flagellatropic phage of Salmonella enterica serovar Typhimurium, called iEPS5, was isolated and characterized. iEPS5 has an icosahedral head and a long noncontractile tail with a tail fiber. Genome sequencing revealed a double-stranded DNA of 59,254 bp having 73 open reading frames (ORFs). To identify the receptor for iEPS5, Tn5 transposon insertion mutants of S. Typhimurium SL1344 that were resistant to the phage were isolated. All of the phage-resistant mutants were found to have mutations in genes involved in flagellar formation, suggesting that the flagellum is the adsorption target of this phage. Analysis of phage infection using the ΔmotA mutant, which is flagellated but nonmotile, demonstrated the requirement of flagellar rotation for iEPS5 infection. Further analysis of phage infection using the ΔcheY mutant revealed that iEPS5 could infect host bacteria only when the flagellum is rotating counterclockwise (CCW). These results suggested that the CCW-rotating flagellar filament is essential for phage adsorption and required for successful infection by iEPS5. In contrast to the well-studied flagellatropic phage Chi, iEPS5 cannot infect the ΔfliK mutant that makes a polyhook without a flagellar filament, suggesting that these two flagellatropic phages utilize different infection mechanisms. Here, we present evidence that iEPS5 injects its DNA into the flagellar filament for infection by assessing DNA transfer from SYBR gold-labeled iEPS5 to the host bacteria.
一种新型的肠沙门氏菌血清型鼠伤寒杆菌鞭毛噬菌体 iEPS5 被分离并进行了特征描述。iEPS5 具有二十面体头部和一个长的非收缩尾巴,带有尾丝。基因组测序揭示了一个 59254bp 的双链 DNA,包含 73 个开放阅读框(ORFs)。为了鉴定 iEPS5 的受体,分离了对噬菌体具有抗性的鼠伤寒杆菌 SL1344 的 Tn5 转座子插入突变体。所有噬菌体抗性突变体都发现其与鞭毛形成相关的基因发生了突变,这表明鞭毛是该噬菌体的吸附靶标。使用 ΔmotA 突变体(有鞭毛但不运动)分析噬菌体感染,表明鞭毛旋转是 iEPS5 感染所必需的。使用 ΔcheY 突变体进一步分析噬菌体感染,表明只有当鞭毛逆时针(CCW)旋转时,iEPS5 才能感染宿主细菌。这些结果表明,CCW 旋转的鞭毛丝对于噬菌体吸附是必需的,并且对于 iEPS5 的成功感染是必需的。与研究充分的鞭毛噬菌体 Chi 不同,iEPS5 不能感染不产生带有鞭毛丝的多钩的 ΔfliK 突变体,这表明这两种鞭毛噬菌体利用不同的感染机制。在这里,我们通过评估 SYBR 金标记的 iEPS5 向宿主细菌的 DNA 转移,提供了证据表明 iEPS5 通过将其 DNA 注入鞭毛丝来进行感染。