Suppr超能文献

表观遗传修饰作为肝脏疾病治疗的新靶点。

Epigenetic modifications as new targets for liver disease therapies.

机构信息

Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

出版信息

J Hepatol. 2013 Dec;59(6):1349-53. doi: 10.1016/j.jhep.2013.05.039. Epub 2013 Jun 4.

Abstract

An important discovery from the human genome mapping project was that it is comprised of a surprisingly low number of genes,with recent estimates suggesting they are as few as 25,000 [1].This supported an alternative hypothesis that our complexity in comparison with lower order species is likely to be determined by regulatory mechanisms operating at levels above the fundamental DNA sequences of the genome [2]. One set of mechanisms that dictate tissue and cellular complexity can be described by the overarching term "epigenetics". In the 1940s, Conrad Waddington described epigenetics as "the branch of biology which studies the causal interactions between genes and their products which bring the phenotype into being". Today we understand epigenetics as a gene regulatory system comprised of 3 major mechanisms including DNA modifications (e.g., methylation), use of histone variants and post-translational modifications of the amino acid tails of histones and non-coding RNAs of which microRNAs are the best characterized [3,4]. Together, these mechanisms orchestrate numerous sets of chemical reactions that switch parts of the genome on and off at specific times and locations.Epigenetic marks, or the epigenome, exhibit a high degree of cellular-specificity and developmental or environmentally driven dynamic plasticity. Due to being at the interface between genome and the environment, the epigenome evolves at a very high rate compared to genetic mutations. Indeed, the differences in the epigenome account for most of the phenotypic uniqueness between closely related species, especially primates. More interestingly,the epigenetic changes, or epimutations, within an individual are not only maintained over cellular generations, but may also be transmitted between generations, such that adaptive epimutations generated in response to a particular environmental cue can influence phenotypes in our children and grandchildren [5].

摘要

人类基因组图谱绘制计划的一项重要发现是,人类基因组由数量惊人少的基因组成,最近的估计表明人类基因仅有 25000 个左右[1]。这一发现支持了另一种假说,即与低等生物相比,人类的复杂性可能是由作用于基因组基本 DNA 序列之上的调控机制决定的[2]。一套决定组织和细胞复杂性的机制可以用一个统称“表观遗传学”来描述。20 世纪 40 年代,康拉德·沃丁顿(Conrad Waddington)将表观遗传学描述为“研究基因与其产物之间因果相互作用的生物学分支,这些相互作用使表型得以形成”。如今,我们将表观遗传学理解为一个由三种主要机制组成的基因调控系统,包括 DNA 修饰(如甲基化)、组蛋白变体的使用以及组蛋白氨基酸尾部的翻译后修饰,其中 microRNA 是研究得最为透彻的[3,4]。这些机制共同协调了大量化学反应,使基因组的某些部分在特定的时间和位置开启或关闭。表观遗传标记或表观基因组表现出高度的细胞特异性和发育或环境驱动的动态可塑性。由于处于基因组和环境之间的界面,与遗传突变相比,表观基因组的进化速度非常快。事实上,在亲缘关系密切的物种(尤其是灵长类动物)之间,表观基因组的差异解释了大部分表型的独特性。更有趣的是,个体内的表观遗传变化或表观突变不仅在细胞世代中得以维持,而且可能在代际之间传递,因此,针对特定环境线索产生的适应性表观突变可以影响我们子孙后代的表型[5]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验