Department of Invertebrates, Royal Belgian Institute of Natural Sciences, B-1000 Brussels, Belgium; Laboratoire de Biologie marine, Université Libre de Bruxelles, B-1050 Brussels, Belgium.
Aix-Marseille Université and Centre Interdisciplinaire de Nanosciences de Marseille (CINaM), Campus de Luminy, F-13288 Marseille, France.
J Struct Biol. 2013 Sep;183(3):441-454. doi: 10.1016/j.jsb.2013.05.018. Epub 2013 Jun 6.
Massive skeletons of living hypercalcified sponges, representative organisms of basal Metazoa, are uncommon models to improve our knowledge on biomineralization mechanisms and their possible evolution through time. Eight living species belonging to various orders of Demospongiae were selected for a comparative mineralogical characterization of their aragonitic or calcitic massive basal skeleton. The latter was prepared for scanning and transmission electron microscopy (SEM and TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD) analyses. SEM results indicated distinctive macro- and micro-structural organizations of the skeleton for each species, likely resulting from a genetically dictated variation in the control exerted on their formation. However, most skeletons investigated shared submicron to nano-scale morphological and crystallographical patterns: (1) single-crystal fibers and bundles were composed of 20 to 100nm large submicronic grains, the smallest structural units, (2) nano-scale likely organic material occurred both within and between these structural units, (3) {110} micro-twin planes were observed along aragonitic fibers, and (4) individual fibers or small bundles protruded from the external growing surface of skeletons. This comparative mineralogical study of phylogenetically distant species brings further evidence to recent biomineralization models already proposed for sponges, corals, mollusks, brachiopods and echinoderms and to the hypothesis of the universal and ancestral character of such mechanisms in Metazoa.
大量生活在高度钙化海绵的骨骼,是基础后生动物代表生物,它们是不常见的模型,可以帮助我们提高对生物矿化机制及其随时间可能进化的认识。选择了属于不同门的 Demospongiae 的 8 个活物种,对其碳酸钙或方解石的大量基础骨骼进行了比较矿物学特征描述。后者准备用于扫描和透射电子显微镜(SEM 和 TEM)、选区电子衍射(SAED)和 X 射线衍射(XRD)分析。SEM 结果表明,每个物种的骨骼都具有独特的宏观和微观结构组织,这可能是由于基因控制的变化,从而对其形成产生了影响。然而,大多数研究的骨骼具有亚微米到纳米级的形态和结晶学模式:(1)单晶纤维和束由 20 到 100nm 大小的亚微米晶粒组成,这是最小的结构单元;(2)纳米级的有机物质存在于这些结构单元内和之间;(3)在方解石纤维上观察到{110}微孪晶面;(4)单个纤维或小束从骨骼的外部生长表面突出。对系统发育上遥远的物种进行的这种比较矿物学研究进一步证明了最近提出的关于海绵、珊瑚、软体动物、腕足动物和棘皮动物的生物矿化模型,以及这些机制在后生动物中具有普遍性和祖先特征的假设。