Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.
J Struct Biol. 2011 Dec;176(3):315-29. doi: 10.1016/j.jsb.2011.08.008. Epub 2011 Aug 23.
The massive basal skeleton of a few remnant living hypercalcified sponges rediscovered since the 1960s are valuable representatives of ancient calcium carbonate biomineralization mechanisms in basal Metazoa. A multi-scale mineralogical characterization of the easily accessible Mediterranean living hypercalcified sponge belonging to Calcarea, Petrobiona massiliana (Vacelet and Lévi, 1958), was conducted. Oriented observations in light and electron microscopy of mature and growing areas of the Mg-calcite basal skeleton were combined in order to describe all structural levels from the submicronic to the macroscopic scale. The smallest units produced are ca. 50-100nm grains that are in a mushy amorphous state before their crystallization. Selected area electron diffraction (SAED) further demonstrated that submicronic grains are assembled into crystallographically coherent clusters or fibers, the latter are even laterally associated into single-crystal bundles. A model of crystallization propagation through amorphous submicronic granular units is proposed to explain the formation of coherent micron-scale structural units. Finally, XRD and EELS analyses highlighted, respectively, inter-individual variation of skeletal Mg contents and heterogeneous spatial distribution of Ca ions in skeletal fibers. All mineralogical features presented here cannot be explained by classical inorganic crystallization principles in super-saturated solutions, but rather underlined a highly biologically regulated formation of the basal skeleton. This study extending recent observations on corals, mollusk and echinoderms confirms that occurrence of submicronic granular units and a possible transient amorphous precursor phase in calcium carbonate skeletons is a common biomineralization strategy already selected by basal metazoans.
自 20 世纪 60 年代以来重新发现的少数现存高度钙化海绵的巨大基底层骨架是古代基础后生动物碳酸钙生物矿化机制的有价值代表。对地中海现存高度钙化海绵(属于Calcarea 属的 Petrobiona massiliana(Vacelet 和 Lévi,1958))进行了多尺度矿物学特征描述。对成熟和生长区域的 Mg 方解石基底层骨架进行了光镜和电子显微镜的定向观察,以便从亚微米到宏观尺度描述所有结构层次。产生的最小单元约为 50-100nm 颗粒,在结晶之前处于糊状非晶态。选区电子衍射(SAED)进一步证明,亚微米颗粒组装成结晶上相干的簇或纤维,后者甚至侧向关联成单晶束。提出了一种通过非晶亚微米颗粒单元进行结晶扩展的模型来解释相干微米尺度结构单元的形成。最后,XRD 和 EELS 分析分别强调了骨骼中 Mg 含量的个体间变化和骨骼纤维中 Ca 离子的不均匀空间分布。这里呈现的所有矿物学特征都不能用超饱和溶液中的经典无机结晶原理来解释,而是强调了基底层骨架的高度生物调控形成。这项研究扩展了最近对珊瑚、软体动物和棘皮动物的观察结果,证实了亚微米颗粒单元的存在和碳酸钙骨骼中可能的瞬态非晶前体相是基础后生动物已经选择的一种常见的生物矿化策略。