School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798.
ACS Appl Mater Interfaces. 2013 Jun 26;5(12):5683-9. doi: 10.1021/am401081d. Epub 2013 Jun 10.
This paper demonstrates a simple, one step, and low cost surface modification technique for producing cyclic olefin copolymer (COC) polymer-based microcapillary electrophoresis chips consisting highly hemocompatible microchannels by UV-photografting with N-vinylpyrrolidone (NVP) monomer. An optimal condition has been identified to achieve the best surface grafting process. It has been found that this surface treatment enables extremely high surface wettability, hemocompatibility, and bond strength to the microchannels. The surface grafting was confirmed by attenuated total reflection Fourier transform-infrared spectroscopic (ATR-FTIR) study. In vitro protein adsorption using fluorescent labeled bovine serum albumin (FITC-BSA) into the COC microchannel results indicates that the modified chips have excellent protein resistance ability because of the increase of surface hydrophilicity. Hence, the modified chips showed fast, reproducible and high efficient separations of proteins (up to 51,000 theoretical plates per meter). Moreover, this surface modification process show no loss in the optical transparency to the modified microchannel surfaces: an important requirement for real capillary electrophoresis since the fluorescent intensity is directly related to the amount of adsorbed protein on the surface. Therefore, we believe that this simple and promising route of surface modification could be very useful for developing high performance COC microfluidic devices for the separation of proteins, amino acids, and other biomolecules.
本文展示了一种简单、一步法、低成本的表面改性技术,用于制造由环烯烃共聚物(COC)聚合物制成的微流控芯片,该聚合物具有高度抗血液相容性的微通道,通过 N-乙烯基吡咯烷酮(NVP)单体的 UV 光接枝法制备。已经确定了最佳条件以实现最佳的表面接枝过程。研究发现,这种表面处理可实现极高的表面润湿性、血液相容性和与微通道的结合强度。表面接枝通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)研究得到了证实。使用荧光标记牛血清白蛋白(FITC-BSA)进入 COC 微通道的体外蛋白质吸附表明,由于表面亲水性的增加,改性芯片具有出色的抗蛋白质能力。因此,改性芯片表现出快速、可重复和高效的蛋白质分离(每米高达 51,000 理论塔板)。此外,这种表面改性过程不会导致改性微通道表面的光透明度降低:这是实际毛细管电泳的重要要求,因为荧光强度与表面上吸附的蛋白质量直接相关。因此,我们相信这种简单而有前途的表面改性途径对于开发高性能 COC 微流控器件用于分离蛋白质、氨基酸和其他生物分子非常有用。