Suppr超能文献

通过超声喷雾沉积聚乙烯醇对 3D 环状烯烃共聚物微井进行超亲水改性,提高其分析可行性和生物相容性。

Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol.

机构信息

School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland.

School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland; MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland.

出版信息

Biomater Adv. 2024 Oct;163:213934. doi: 10.1016/j.bioadv.2024.213934. Epub 2024 Jun 28.

Abstract

Sample partitioning is a crucial step towards digitization of biological assays on polymer microfluidic platforms. However, effective liquid filling into microwells and long-term hydrophilicity remain a challenge in polymeric microfluidic devices, impeding the applicability in diagnostic and cell culture studies. To overcome this, a method to produce permanent superhydrophilic 3-dimensional microwells using cyclic olefin copolymer (COC) microfluidic chips is presented. The COC substrate is oxidized using UV treatment followed by ultrasonic spray coating of polyvinyl alcohol solution, offering uniform and long-term coating of high-aspect ratio microfeatures. The coated COC surfaces are UV-cured before bonding with a hydrophobic pressure-sensitive adhesive to drive selective filling into the wells. The surface hydrophilicity achieved using this method remains unchanged (water contact angle of 9°) for up to 6 months and the modified surface is characterized for physical (contact angle & surface energy, morphology, integrity of microfeatures and roughness), chemical composition (FTIR, Raman spectroscopy) and coating stability (pH, temperature, time). To establish the feasibility of the modified surface in biological applications, PVA-coated COC microfluidic chips are tested for DNA sensing (digital LAMP detection of CMV), and biocompatibility through protein adsorption and cell culture studies (cell adhesion, viability, and metabolic activity). Kidney and breast cells remained viable for the duration of testing (7 days) on this modified surface, and the coating did not affect the protein content, morphology or quality of the cultured cells. The ultrasonic spray coated system, coating with 0.25 % PVA for 15 cycles with 0.12 A current after UV oxidation, increased the surface energy of the COC (naturally hydrophobic) from 22.04 to 112.89 mJ/m and improved the filling efficiency from 40 % (native untreated COC) to 94 % in the microwells without interfering with the biocompatibility of the surface, proving to be an efficient, high-throughput and scalable method of microfluidic surface treatment for diagnostic and cell growth applications.

摘要

样品分割是将生物分析在聚合物微流控平台上数字化的关键步骤。然而,在聚合物微流控器件中,有效填充微井和长期保持亲水性仍然是一个挑战,这阻碍了其在诊断和细胞培养研究中的应用。为了克服这一问题,提出了一种使用环烯烃共聚物(COC)微流控芯片生产永久超亲水 3D 微井的方法。COC 基底通过 UV 处理进行氧化,然后通过超声喷涂聚乙醇溶液进行涂覆,从而均匀且长期地涂覆高纵横比微特征。涂覆后的 COC 表面在与疏水压敏胶键合之前进行 UV 固化,以驱动选择性填充到微井中。使用这种方法获得的表面亲水性在长达 6 个月的时间内保持不变(水接触角为 9°),并且对改性表面进行了物理(接触角和表面能、形态、微特征完整性和粗糙度)、化学组成(FTIR、拉曼光谱)和涂层稳定性(pH、温度、时间)的表征。为了在生物应用中验证改性表面的可行性,对 PVA 涂覆的 COC 微流控芯片进行了 DNA 传感(CMV 的数字 LAMP 检测)和生物相容性测试,包括蛋白质吸附和细胞培养研究(细胞黏附、活力和代谢活性)。在这种改性表面上,肾细胞和乳腺细胞在测试期间(7 天)保持活力,并且涂层不会影响培养细胞的蛋白质含量、形态或质量。经 UV 氧化后,采用 0.25% PVA 超声喷涂系统进行 15 次涂覆,每次涂覆电流为 0.12 A,可将 COC(天然疏水性)的表面能从 22.04 增加到 112.89 mJ/m,将微井中的填充效率从 40%(未经处理的 COC)提高到 94%,同时不影响表面的生物相容性,证明这是一种高效、高通量且可扩展的微流控表面处理方法,适用于诊断和细胞生长应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验