Suppr超能文献

Superactivation of thermolysin by acylation with amino acid N-hydroxysuccinimide esters.

作者信息

Blumberg S, Vallee B L

出版信息

Biochemistry. 1975 Jun 3;14(11):2410-9. doi: 10.1021/bi00682a022.

Abstract

Synthesis of a series of active N-hydroxysuccinimide esters of aliphatic and aromatic amino acids has yielded a new class of reagents for the covalent modification of proteolytic enzymes such as thermolysin. The activities of aliphatic acyl amino acid thermolysins are from 1.7 to 3.6 times greater than that of the native enzyme when hydrolyzing durylacryloyl-Gly-Leu-NH2, the substrate employed most widely. By comparison, the aromatic acylamino acid derivatives are "superactive," their activities being as much as 70-fold greater. Apparently, the aromatic character of the amino acid introduced is a critical variable in the determination of the functional response. The increased activity is completely restored to that of the native enzyme by deacylation with nucleophiles, such as hydroxylamine, and the rate of restoration of native activity is a function of the particular acyl group incorporated. Preliminary evidence regarding the chemical properties of the modified enzyme suggests that tyrosine, rather than lysine, histidine, or arginine, may be the residue modified. The functional consequences of successive modification with different reagents, moreover, indicate that each of them reacts with the same protein residue. The competitive inhibitors beta-phenyl-propionyl-Phe and Zn-2+ do not prevent modification with these active esters. Hence, the site(s) of their inhibitory action differ(s) from that at which modification occurs. The structure of the substrate is also a significant variable which determines the rate at which each acyl amino acid thermolysin hydrolyzes peptides. Depending on the particular substrate, the activity of aromatic derivatives can be as much as 400-fold greater than that of the native enzyme, and the resultant activity patterns can be ordered in a series characteristic for each enzyme derivative.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验