Suppr超能文献

伯氏疏螺旋体线性质粒 28-3 在实验性鼠-蜱感染模型中赋予选择性优势。

Borrelia burgdorferi linear plasmid 28-3 confers a selective advantage in an experimental mouse-tick infection model.

机构信息

Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

出版信息

Infect Immun. 2013 Aug;81(8):2986-96. doi: 10.1128/IAI.00219-13. Epub 2013 Jun 10.

Abstract

Borrelia burgdorferi, the bacterium that causes Lyme disease, has a unique segmented genome consisting of numerous linear and circular plasmids and a linear chromosome. Many of these genetic elements have been found to encode factors critical for B. burgdorferi to complete the infectious cycle. However, several plasmids remain poorly characterized, and their roles during infection with B. burgdorferi have not been elucidated. To more fully characterize the role of one of the four 28-kb linear plasmids, lp28-3, we generated strains specifically lacking lp28-3 and assayed the contribution of genes carried by lp28-3 to B. burgdorferi infection. We found that lp28-3 does not carry any genes that are strictly required for infection of a mouse or tick and that lp28-3-deficient spirochetes are competent at causing a disseminated infection. Interestingly, spirochetes containing lp28-3 were at a selective advantage compared to lp28-3-deficient spirochetes when coinjected into a mouse, and this advantage was reflected in the population of spirochetes acquired by feeding ticks. Our data demonstrate that genes carried by lp28-3, although not essential, contribute to the fitness of B. burgdorferi during infection.

摘要

伯氏疏螺旋体,引起莱姆病的细菌,具有独特的分段基因组,由许多线性和圆形质粒和一个线性染色体组成。已经发现这些遗传元件中的许多编码因子对于伯氏疏螺旋体完成感染周期至关重要。然而,有几个质粒仍然描述不足,它们在伯氏疏螺旋体感染期间的作用尚未阐明。为了更全面地描述四个 28kb 线性质粒之一 lp28-3 的作用,我们生成了专门缺乏 lp28-3 的菌株,并检测了 lp28-3 携带的基因对伯氏疏螺旋体感染的贡献。我们发现 lp28-3 不携带任何严格感染小鼠或 tick 所必需的基因,并且 lp28-3 缺陷的螺旋体能够引起全身性感染。有趣的是,与 lp28-3 缺陷的螺旋体相比,含有 lp28-3 的螺旋体在共同注射到小鼠中时具有选择性优势,并且这种优势反映在通过喂食 tick 获得的螺旋体种群中。我们的数据表明,lp28-3 携带的基因虽然不是必需的,但在感染期间有助于伯氏疏螺旋体的适应性。

相似文献

1
Borrelia burgdorferi linear plasmid 28-3 confers a selective advantage in an experimental mouse-tick infection model.
Infect Immun. 2013 Aug;81(8):2986-96. doi: 10.1128/IAI.00219-13. Epub 2013 Jun 10.
6
Effects of vlsE complementation on the infectivity of Borrelia burgdorferi lacking the linear plasmid lp28-1.
Infect Immun. 2004 Nov;72(11):6577-85. doi: 10.1128/IAI.72.11.6577-6585.2004.
8
Plasmid requirements for infection of ticks by Borrelia burgdorferi.
Vector Borne Zoonotic Dis. 2005 Fall;5(3):237-45. doi: 10.1089/vbz.2005.5.237.
9
Probing the Role of a Highly Conserved Gene of the Lyme Disease Spirochete, Throughout the Mouse-Tick Infectious Cycle.
Infect Immun. 2021 Nov 16;89(12):e0033321. doi: 10.1128/IAI.00333-21. Epub 2021 Sep 27.

引用本文的文献

1
Strain-Specific Differences in Mouse Infectivity and Pathology.
Pathogens. 2025 Apr 5;14(4):352. doi: 10.3390/pathogens14040352.
2
factor H-binding proteins are not required for serum resistance and infection in mammals.
Infect Immun. 2024 Mar 12;92(3):e0052923. doi: 10.1128/iai.00529-23. Epub 2024 Jan 30.
3
Cas9-mediated endogenous plasmid loss in Borrelia burgdorferi.
PLoS One. 2022 Nov 28;17(11):e0278151. doi: 10.1371/journal.pone.0278151. eCollection 2022.
4
Large-Scale Sequencing of for the Construction of Pan-Genomic-Based Diagnostics.
Genes (Basel). 2022 Sep 8;13(9):1604. doi: 10.3390/genes13091604.
5
Epigenomic Landscape of Lyme Disease Spirochetes Reveals Novel Motifs.
mBio. 2021 Jun 29;12(3):e0128821. doi: 10.1128/mBio.01288-21. Epub 2021 Jun 22.
6
Genetic Manipulation of .
Curr Issues Mol Biol. 2021;42:307-332. doi: 10.21775/cimb.042.307. Epub 2020 Dec 10.
7
New Insights Into CRASP-Mediated Complement Evasion in the Lyme Disease Enzootic Cycle.
Front Cell Infect Microbiol. 2020 Jan 30;10:1. doi: 10.3389/fcimb.2020.00001. eCollection 2020.
8
Primordial origin and diversification of plasmids in Lyme disease agent bacteria.
BMC Genomics. 2018 Mar 27;19(1):218. doi: 10.1186/s12864-018-4597-x.
9
Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi.
BMC Genomics. 2017 Feb 15;18(1):165. doi: 10.1186/s12864-017-3553-5.
10
Borrelia burgdorferi: Carbon Metabolism and the Tick-Mammal Enzootic Cycle.
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0011-2014.

本文引用的文献

3
Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids.
PLoS One. 2012;7(3):e33280. doi: 10.1371/journal.pone.0033280. Epub 2012 Mar 14.
4
Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes.
Nat Rev Microbiol. 2012 Jan 9;10(2):87-99. doi: 10.1038/nrmicro2714.
5
Gene regulation in Borrelia burgdorferi.
Annu Rev Microbiol. 2011;65:479-99. doi: 10.1146/annurev.micro.112408.134040.
6
Borrelia burgdorferi linear plasmid 38 is dispensable for completion of the mouse-tick infectious cycle.
Infect Immun. 2011 Sep;79(9):3510-7. doi: 10.1128/IAI.05014-11. Epub 2011 Jun 27.
7
Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut.
Gut Microbes. 2010 Jan;1(1):45-50. doi: 10.4161/gmic.1.1.10386.
8
Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi.
J Bacteriol. 2011 Mar;193(5):1161-71. doi: 10.1128/JB.01176-10. Epub 2010 Dec 30.
9
Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism.
Mol Microbiol. 2011 Jan;79(1):7-20. doi: 10.1111/j.1365-2958.2010.07455.x. Epub 2010 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验