Suppr超能文献

莱姆病螺旋体的表观基因组景观揭示了新的基序。

Epigenomic Landscape of Lyme Disease Spirochetes Reveals Novel Motifs.

机构信息

Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

出版信息

mBio. 2021 Jun 29;12(3):e0128821. doi: 10.1128/mBio.01288-21. Epub 2021 Jun 22.

Abstract

Borrelia burgdorferi, the etiological agent of Lyme disease, persists in nature through an enzootic cycle consisting of a vertebrate host and an tick vector. The sequence motifs modified by two well-characterized restriction/modification (R/M) loci of B. burgdorferi type strain B31 were recently described, but the methylation profiles of other Lyme disease bacteria have not been characterized. Here, the methylomes of B. burgdorferi type strain B31 and 7 clonal derivatives, along with B. burgdorferi N40, B. burgdorferi 297, B. burgdorferi CA-11, B. afzelii PKo, B. afzelii BO23, and B. garinii PBr, were defined through PacBio single-molecule real-time (SMRT) sequencing. This analysis revealed 9 novel sequence motifs methylated by the plasmid-encoded restriction/modification enzymes of these strains. Furthermore, while a previous analysis of B. burgdorferi B31 revealed an epigenetic impact of methylation on the global transcriptome, the current data contradict those findings; our analyses of wild-type B. burgdorferi B31 revealed no consistent differences in gene expression among isogenic derivatives lacking one or more restriction/modification enzymes. The principal causative agent of Lyme disease in humans in the United States is Borrelia burgdorferi, while B. burgdorferi, B. afzelii, and B. garinii, collectively members of the Borrelia burgdorferi species complex, cause Lyme disease in Europe and Asia. Two plasmid-encoded restriction/modification systems have been shown to limit the genetic transformation of B. burgdorferi type strain B31 with foreign DNA, but little is known about the restriction/modification systems of other Lyme disease bacteria. This paper describes the methylation motifs present on genomic DNAs of multiple B. burgdorferi, B. afzelii, and B. garinii strains. Contrary to a previous report, we did not find evidence for an epigenetic impact on gene expression by methylation. Knowledge of the motifs recognized and methylated by the restriction/modification enzymes of Lyme disease will facilitate molecular genetic investigations of these important human pathogens. Additionally, the similar motifs methylated by orthologous restriction/modification systems of Lyme disease bacteria and the presence of these motifs within recombinogenic loci suggest a biological role for these ubiquitous restriction/modification systems in horizontal gene transfer.

摘要

伯氏疏螺旋体是莱姆病的病原体,通过一个由脊椎动物宿主和蜱媒介组成的地方性循环而在自然界中持续存在。最近描述了伯氏疏螺旋体 B31 型菌株中两个特征明确的限制/修饰(R/M)基因座修饰的序列基序,但其他莱姆病细菌的甲基化谱尚未得到表征。在此,通过 PacBio 单分子实时(SMRT)测序,对伯氏疏螺旋体 B31 型菌株和 7 个克隆衍生物,以及伯氏疏螺旋体 N40、伯氏疏螺旋体 297、伯氏疏螺旋体 CA-11、伯氏疏螺旋体 PKo、伯氏疏螺旋体 BO23 和伯氏疏螺旋体 PBr 的甲基组进行了定义。这项分析揭示了这些菌株中质粒编码的限制/修饰酶修饰的 9 个新的序列基序。此外,尽管之前对伯氏疏螺旋体 B31 的分析显示了甲基化对整个转录组的表观遗传影响,但目前的数据与这些发现相矛盾;我们对野生型伯氏疏螺旋体 B31 的分析表明,缺乏一种或多种限制/修饰酶的同基因衍生物之间的基因表达没有一致差异。在美国,人类莱姆病的主要病原体是伯氏疏螺旋体,而伯氏疏螺旋体、伯氏疏螺旋体和伯氏疏螺旋体则共同构成了伯氏疏螺旋体物种复合体,导致欧洲和亚洲的莱姆病。已经表明,两个质粒编码的限制/修饰系统限制了外源 DNA 对伯氏疏螺旋体 B31 型菌株的遗传转化,但对其他莱姆病细菌的限制/修饰系统知之甚少。本文描述了多个伯氏疏螺旋体、伯氏疏螺旋体和伯氏疏螺旋体菌株基因组 DNA 上存在的甲基化基序。与之前的一份报告相反,我们没有发现甲基化对基因表达的表观遗传影响的证据。了解莱姆病限制/修饰酶识别和甲基化的基序将有助于对这些重要的人类病原体进行分子遗传学研究。此外,莱姆病细菌的同源限制/修饰系统甲基化的相似基序以及这些基序在重组基因座内的存在表明,这些普遍存在的限制/修饰系统在水平基因转移中具有生物学作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c430/8262957/4e2f6a9c859c/mbio.01288-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验