Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):E2362-70. doi: 10.1073/pnas.1301837110. Epub 2013 Jun 10.
Most regions of the vertebrate central nervous system develop by the sequential addition of different classes of neurons and glia. This phenomenon has been best characterized in laminated structures like the retina and the cerebral cortex, in which the progenitor cells in these structures are thought to change in their competence as development proceeds to generate different types of neurons in a stereotypic sequence that is conserved across vertebrates. We previously reported that conditional deletion of Dicer prevents the change in competence of progenitors to generate later-born cell types, suggesting that specific microRNAs (miRNAs) are required for this developmental transition. In this report, we now show that three miRNAs, let-7, miR-125, and miR-9, are key regulators of the early to late developmental transition in retinal progenitors: (i) members of these three miRNA families increase over the relevant developmental period in normal retinal progenitors; (ii) inhibiting the function of these miRNAs produces changes in retinal development similar to Dicer CKO; (iii) overexpression of members of these three miRNA families in Dicer-CKO retinas can rescue the phenotype, allowing their progression to late progenitors; (iv) overexpression of these miRNAs can accelerate normal retinal development; (v) microarray and computational analyses of Dicer-CKO retinal cells identified two potential targets of the late-progenitor miRNAs: Protogenin (Prtg) and Lin28b; and (vi) overexpression of either Lin28 or Prtg can maintain the early progenitor state. Together, these data demonstrate that a conserved miRNA pathway controls a key step in the progression of temporal identity in retinal progenitors.
脊椎动物中枢神经系统的大多数区域都是通过顺序添加不同类型的神经元和神经胶质细胞来发育的。这种现象在分层结构中表现得最为明显,如视网膜和大脑皮层,在这些结构中,祖细胞被认为随着发育的进行而改变其能力,以产生不同类型的神经元,其顺序在脊椎动物中是保守的。我们之前报道过,条件性缺失 Dicer 会阻止祖细胞能力的改变,从而无法产生后来出生的细胞类型,这表明特定的 microRNAs(miRNAs)是这种发育转变所必需的。在本报告中,我们现在表明,三个 miRNAs(let-7、miR-125 和 miR-9)是视网膜祖细胞早期到晚期发育转变的关键调节因子:(i)在正常视网膜祖细胞中,这三个 miRNA 家族的成员在相关发育期间增加;(ii)抑制这些 miRNA 的功能会导致视网膜发育发生类似于 Dicer CKO 的变化;(iii)在 Dicer-CKO 视网膜中过表达这三个 miRNA 家族的成员可以挽救表型,使其能够向晚期祖细胞发育;(iv)过表达这些 miRNA 可以加速正常的视网膜发育;(v)Dicer-CKO 视网膜细胞的微阵列和计算分析确定了晚期祖细胞 miRNA 的两个潜在靶点:Protogenin(Prtg)和 Lin28b;(vi)过表达 Lin28 或 Prtg 可以维持早期祖细胞状态。总之,这些数据表明,一个保守的 miRNA 通路控制着视网膜祖细胞中时间身份进展的关键步骤。