Suppr超能文献

混合随机项目反应建模:一项吸烟行为验证研究。

Mixture randomized item-response modeling: a smoking behavior validation study.

机构信息

Department of Research Methodology, Measurement, and Data Analysis, Faculty of Behavioral Sciences, University of Twente, Enschede, The Netherlands.

出版信息

Stat Med. 2013 Nov 30;32(27):4821-37. doi: 10.1002/sim.5859. Epub 2013 Jun 10.

Abstract

Misleading response behavior is expected in medical settings where incriminating behavior is negatively related to the recovery from a disease. In the present study, lung patients feel social and professional pressure concerning smoking and experience questions about smoking behavior as sensitive and tend to conceal embarrassing or threatening information. The randomized item-response survey method is expected to improve the accuracy of self-reports as individual item responses are masked and only randomized item responses are observed. We explored the validation of the randomized item-response technique in a unique experimental study. Therefore, we administered a new multi-item measure assessing smoking behavior by using a treatment-control design (randomized response (RR) or direct questioning). After the questionnaire, we administered a breath test by using a carbon monoxide (CO) monitor to determine the smoking status of the patient. We used the response data to measure the individual smoking behavior by using a mixture item-response model. It is shown that the detected smokers scored significantly higher in the RR condition compared with the directly questioned condition. We proposed a Bayesian latent variable framework to evaluate the diagnostic test accuracy of the questionnaire using the randomized-response technique, which is based on the posterior densities of the subject's smoking behavior scores together with the breath test measurements. For different diagnostic test thresholds, we obtained moderate posterior mean estimates of sensitivity and specificity by observing a limited number of discrete randomized item responses.

摘要

在与疾病康复呈负相关的医学环境中,人们可能会表现出误导性的反应行为。在本研究中,肺病患者在吸烟问题上感受到社会和职业压力,认为有关吸烟行为的问题很敏感,往往会隐瞒尴尬或威胁性的信息。随机项目反应调查方法有望提高自我报告的准确性,因为个体项目反应被掩盖,只观察到随机项目反应。我们通过一项独特的实验研究探索了随机项目反应技术的有效性。因此,我们采用治疗对照设计(随机反应 (RR) 或直接询问)来管理评估吸烟行为的新多项目措施。在问卷调查之后,我们使用一氧化碳 (CO) 监测器进行呼气测试,以确定患者的吸烟状况。我们使用混合项目反应模型,根据响应数据来衡量个体的吸烟行为。结果表明,与直接询问相比,检测到的吸烟者在 RR 条件下的得分明显更高。我们提出了一个贝叶斯潜在变量框架,通过观察有限数量的离散随机项目反应来评估使用随机反应技术的问卷的诊断测试准确性,该框架基于受试者吸烟行为得分的后验密度以及呼气测试测量结果。对于不同的诊断测试阈值,通过观察有限数量的离散随机项目反应,我们获得了敏感性和特异性的适度后验均值估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验