Ball Roderick D
Scion (New Zealand Forest Research Institute Limited), Rotorua, New Zealand.
Methods Mol Biol. 2013;1019:171-92. doi: 10.1007/978-1-62703-447-0_7.
In this chapter we describe methods for statistical analysis of GWAS data with the goal of quantifying evidence for genomic effects associated with trait variation, while avoiding spurious associations due to evidence not being well quantified or due to population structure.Single marker analysis and imputation are discussed in Sect. 1, and a Bayesian multi-locus analysis using the BayesQTLBIC R package (1, 2) is described in Sect. 2. The multi-locus analysis, applied in a genomic window, enables local inference of the QTL genetic architecture and is an alternative to imputation. Multi-locus analysis with BayesQTLBIC, including calculation of posterior probabilities for alternative models, posterior probabilities for number of QTL, marginal probabilities for markers, and Bayes factors for individual chromosomes, is demonstrated for simulated QTL data. Methods for correcting the population structure and the possible effects of population structure on power are discussed in Sect. 3. Section 4 considers analysis combining information from linkage and linkage disequilibrium when sampling from a pedigree. Section 5 considers combining information from two different studies-showing that data from an existing QTL mapping family can be profitably used in combination with an association study-prior odds are higher for candidate genes mapping into a QTL region in the QTL mapping family, and, optionally, the number of markers genotyped in an association study can be reduced. Examples using R and the R packages BayesQTLBIC, ncdf are given.
在本章中,我们描述了全基因组关联研究(GWAS)数据的统计分析方法,目的是量化与性状变异相关的基因组效应的证据,同时避免因证据量化不当或群体结构导致的虚假关联。第1节讨论了单标记分析和基因填充,第2节描述了使用BayesQTLBIC R软件包(1, 2)进行的贝叶斯多位点分析。在基因组窗口中应用的多位点分析能够对数量性状基因座(QTL)的遗传结构进行局部推断,是基因填充的一种替代方法。针对模拟的QTL数据,展示了使用BayesQTLBIC进行的多位点分析,包括替代模型的后验概率计算、QTL数量的后验概率计算、标记的边际概率计算以及单个染色体的贝叶斯因子计算。第3节讨论了校正群体结构的方法以及群体结构对检验效能可能产生的影响。第4节考虑了从家系中抽样时结合连锁和连锁不平衡信息的分析。第5节考虑了结合来自两项不同研究的信息——表明来自现有QTL定位家系的数据可以与关联研究结合使用,QTL定位家系中映射到QTL区域的候选基因的先验概率更高,并且,可选择地,可以减少关联研究中基因分型的标记数量。给出了使用R以及R软件包BayesQTLBIC、ncdf的示例。