Garrick Dorian J, Fernando Rohan L
Department of Animal Science, Iowa State University, Ames, IA, USA.
Methods Mol Biol. 2013;1019:275-98. doi: 10.1007/978-1-62703-447-0_11.
Genomic prediction exploits historical genotypic and phenotypic data to predict performance on selection candidates based only on their genotypes. It achieves this by a process known as training that derives the values of all the chromosome fragments that can be characterized by regressing the historical phenotypes on some or all of the genotyped loci. A genome-wide association study (GWAS) involves a genome-wide search for chromosome fragments with significant association with phenotype. One Bayesian approach to GWAS makes inferences using samples from the posterior distribution of genotypic effects obtained in the training phase of genomic prediction. Here we describe how to do this from commonly used Bayesian methods for genomic prediction, and we comment on how to interpret the results.
基因组预测利用历史基因型和表型数据,仅根据候选选择个体的基因型来预测其性能。它通过一个称为训练的过程来实现这一点,该过程通过将历史表型对部分或所有基因分型位点进行回归,得出所有可表征的染色体片段的值。全基因组关联研究(GWAS)涉及在全基因组范围内搜索与表型有显著关联的染色体片段。一种用于GWAS的贝叶斯方法利用在基因组预测训练阶段获得的基因型效应后验分布的样本进行推断。在这里,我们描述如何从常用的基因组预测贝叶斯方法来做到这一点,并对如何解释结果进行评论。