Ball Roderick D
Scion (New Zealand Forest Research Institute Limited), Rotorua, New Zealand.
Methods Mol Biol. 2013;1019:37-98. doi: 10.1007/978-1-62703-447-0_3.
In this chapter we describe a novel Bayesian approach to designing GWAS studies with the goal of ensuring robust detection of effects of genomic loci associated with trait variation.The goal of GWAS is to detect loci associated with variation in traits of interest. Finding which of 500,000-1,000,000 loci has a practically significant effect is a difficult statistical problem, like finding a needle in a haystack. We address this problem by designing experiments to detect effects with a given Bayes factor, where the Bayes factor is chosen sufficiently large to overcome the low prior odds for genomic associations. Methods are given for various possible data structures including random population samples, case-control designs, transmission disequilibrium tests, sib-based transmission disequilibrium tests, and other family-based designs including designs for plants with clonal replication. We also consider the problem of eliciting prior information from experts, which is necessary to quantify prior odds for loci. We advocate a "subjective" Bayesian approach, where the prior distribution is considered as a mathematical representation of our prior knowledge, while also giving generic formulae that allow conservative computations based on low prior information, e.g., equivalent to the information in a single sample point. Examples using R and the R packages ldDesign are given throughout.
在本章中,我们描述了一种新颖的贝叶斯方法来设计全基因组关联研究(GWAS),其目标是确保能可靠地检测出与性状变异相关的基因组位点的效应。GWAS的目标是检测与感兴趣的性状变异相关的位点。要从50万个至100万个位点中找出哪个具有实际显著效应是一个困难的统计问题,就如同大海捞针。我们通过设计实验来检测具有给定贝叶斯因子的效应来解决这个问题,其中贝叶斯因子被选择得足够大,以克服基因组关联的低先验概率。针对各种可能的数据结构给出了方法,包括随机人群样本、病例对照设计、传递不平衡检验、基于同胞的传递不平衡检验以及其他基于家系的设计,包括具有克隆复制的植物的设计。我们还考虑了从专家那里获取先验信息的问题,这对于量化位点的先验概率是必要的。我们提倡一种“主观”贝叶斯方法,其中先验分布被视为我们先验知识的数学表示,同时也给出了通用公式,这些公式允许基于低先验信息进行保守计算,例如,等同于单个样本点中的信息。 throughout给出了使用R和R包ldDesign的示例。 (注:原文中“throughout”在译文中位置调整了一下,使其更符合中文表达习惯)