Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont College of Medicine, Burlington, Vermont, USA.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):238-44. doi: 10.1136/amiajnl-2013-001700. Epub 2013 Jun 11.
To identify potential opportunities for drug repurposing by developing an automated approach to pre-screen the predicted proteomes of any organism against databases of known drug targets using only freely available resources.
We employed a combination of Ruby scripts that leverage data from the DrugBank and ChEMBL databases, MySQL, and BLAST to predict potential drugs and their targets from 13 published genomes. Results from a previous cell-based screen to identify inhibitors of Cryptosporidium parvum growth were used to validate our in-silico prediction method.
In-vitro validation of these results, using a cell-based C parvum growth assay, showed that the predicted inhibitors were significantly more likely than expected by chance to have confirmed activity, with 8.9-15.6% of predicted inhibitors confirmed depending on the drug target database used. This method was then used to predict inhibitors for the following 13 disease-causing protozoan parasites, including: C parvum, Entamoeba histolytica, Giardia intestinalis, Leishmania braziliensis, Leishmania donovani, Leishmania major, Naegleria gruberi (in proxy of Naegleria fowleri), Plasmodium falciparum, Plasmodium vivax, Toxoplasma gondii, Trichomonas vaginalis, Trypanosoma brucei and Trypanosoma cruzi.
Although proteome-wide screens for drug targets have disadvantages, in-silico methods can be developed that are fast, broad, inexpensive, and effective. In-vitro validation of our results for C parvum indicate that the method presented here can be used to construct a library for more directed small molecule screening, or pipelined into structural modeling and docking programs to facilitate target-based drug development.
通过开发一种自动化方法,仅使用免费资源,针对任何生物体的预测蛋白质组与已知药物靶点数据库进行预筛选,从而识别药物再利用的潜在机会。
我们采用了 Ruby 脚本组合,利用 DrugBank 和 ChEMBL 数据库、MySQL 和 BLAST 中的数据,从 13 个已发表的基因组中预测潜在药物及其靶点。使用先前基于细胞的筛选来鉴定抑制微小隐孢子虫生长的抑制剂的结果来验证我们的计算机预测方法。
使用基于细胞的微小隐孢子虫生长测定法对这些结果进行体外验证表明,预测抑制剂具有比预期更高的确认活性的可能性,这取决于所使用的药物靶点数据库,8.9-15.6%的预测抑制剂得到确认。然后,我们使用该方法预测了以下 13 种引起疾病的原生动物寄生虫的抑制剂,包括微小隐孢子虫、溶组织内阿米巴、蓝氏贾第鞭毛虫、巴西利什曼原虫、杜氏利什曼原虫、冈比亚锥虫、纳格里虫(以纳格里虫为代表)、恶性疟原虫、间日疟原虫、刚地弓形虫、阴道毛滴虫、布氏锥虫和克氏锥虫。
尽管针对药物靶点的蛋白质组筛选存在缺点,但可以开发出快速、广泛、廉价且有效的计算机方法。对微小隐孢子虫的结果进行的体外验证表明,此处提出的方法可用于构建更有针对性的小分子筛选文库,或者将其纳入结构建模和对接程序中,以促进基于靶点的药物开发。